IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v162y2016icp940-947.html
   My bibliography  Save this article

Experimental study of copper modified manganese ores as oxygen carriers in a dual fluidized bed reactor

Author

Listed:
  • Xu, Lei
  • Sun, Hongming
  • Li, Zhenshan
  • Cai, Ningsheng

Abstract

Chemical-looping combustion (CLC) is a developing CO2 capture technology. CLC makes use of the repeated oxidation/reduction reactions of metal oxide (oxygen carrier, OC) to separate CO2 from fuel combustion and to obtain a pure CO2 stream suitable for compression and storage. Low cost materials, such as natural ores, are required for coal-fueled CLC because the lifetime of the oxygen carrier (OC) is lowered by side reactions with the fuel ash or carryover losses. In this study, five manganese ores were examined as oxygen carriers using CO as the fuel gas in a laboratory batch fluidized bed reactor. All five of the ores were impregnated by copper nitrate solution to evaluate the reactivity enhancement of copper impregnation. The period with full CO conversion can be enhanced 2–100 times for different ores in the single fluidized bed test, which indicated that the Cu impregnation may be a general method to enhance the reactivity of manganese ores. Finally, one manganese ore and the corresponding Cu-modified particles were tested in a dual fluidized bed reactor. The attrition rates of both materials were measured as 0.13wt.%/h during the 88h operation in the dual fluidized bed. Both the manganese ore and the Cu-impregnated ore exhibited stable and high reactivity during the continuous test in the dual fluidized bed reactor, even at a low temperature (∼310°C). Copper impregnation had no obvious influence on the attrition property of the manganese ore.

Suggested Citation

  • Xu, Lei & Sun, Hongming & Li, Zhenshan & Cai, Ningsheng, 2016. "Experimental study of copper modified manganese ores as oxygen carriers in a dual fluidized bed reactor," Applied Energy, Elsevier, vol. 162(C), pages 940-947.
  • Handle: RePEc:eee:appene:v:162:y:2016:i:c:p:940-947
    DOI: 10.1016/j.apenergy.2015.10.167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915014099
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.10.167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rydén, Magnus & Leion, Henrik & Mattisson, Tobias & Lyngfelt, Anders, 2014. "Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling," Applied Energy, Elsevier, vol. 113(C), pages 1924-1932.
    2. Lyngfelt, Anders, 2014. "Chemical-looping combustion of solid fuels – Status of development," Applied Energy, Elsevier, vol. 113(C), pages 1869-1873.
    3. Ströhle, Jochen & Orth, Matthias & Epple, Bernd, 2014. "Design and operation of a 1MWth chemical looping plant," Applied Energy, Elsevier, vol. 113(C), pages 1490-1495.
    4. Ishida, M. & Zheng, D. & Akehata, T., 1987. "Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis," Energy, Elsevier, vol. 12(2), pages 147-154.
    5. Arjmand, Mehdi & Leion, Henrik & Mattisson, Tobias & Lyngfelt, Anders, 2014. "Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels," Applied Energy, Elsevier, vol. 113(C), pages 1883-1894.
    6. Moldenhauer, Patrick & Rydén, Magnus & Mattisson, Tobias & Younes, Mourad & Lyngfelt, Anders, 2014. "The use of ilmenite as oxygen carrier with kerosene in a 300W CLC laboratory reactor with continuous circulation," Applied Energy, Elsevier, vol. 113(C), pages 1846-1854.
    7. Ishida, Masaru & Jin, Hongguang, 1994. "A new advanced power-generation system using chemical-looping combustion," Energy, Elsevier, vol. 19(4), pages 415-422.
    8. Schwebel, G.L. & Filippou, D. & Hudon, G. & Tworkowski, M. & Gipperich, A. & Krumm, W., 2014. "Experimental comparison of two different ilmenites in fluidized bed and fixed bed chemical-looping combustion," Applied Energy, Elsevier, vol. 113(C), pages 1902-1908.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Czakiert & Jaroslaw Krzywanski & Anna Zylka & Wojciech Nowak, 2022. "Chemical Looping Combustion: A Brief Overview," Energies, MDPI, vol. 15(4), pages 1-19, February.
    2. Tescari, Stefania & Neumann, Nicole Carina & Sundarraj, Pradeepkumar & Moumin, Gkiokchan & Rincon Duarte, Juan Pablo & Linder, Marc & Roeb, Martin, 2022. "Storing solar energy in continuously moving redox particles – Experimental analysis of charging and discharging reactors," Applied Energy, Elsevier, vol. 308(C).
    3. Siriwardane, Ranjani & Riley, Jarrett & Bayham, Samuel & Straub, Douglas & Tian, Hanjing & Weber, Justin & Richards, George, 2018. "50-kWth methane/air chemical looping combustion tests with commercially prepared CuO-Fe2O3-alumina oxygen carrier with two different techniques," Applied Energy, Elsevier, vol. 213(C), pages 92-99.
    4. Fredrik Hildor & Tobias Mattisson & Carl Linderholm & Henrik Leion, 2023. "Metal impregnation on steel converter slag as an oxygen carrier," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 13(4), pages 509-519, August.
    5. Tian, Xin & Zhao, Haibo & Ma, Jinchen, 2017. "Cement bonded fine hematite and copper ore particles as oxygen carrier in chemical looping combustion," Applied Energy, Elsevier, vol. 204(C), pages 242-253.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
    2. Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
    3. Zhang, Hao & Hong, Hui & Jiang, Qiongqiong & Deng, Ya'nan & Jin, Hongguang & Kang, Qilan, 2018. "Development of a chemical-looping combustion reactor having porous honeycomb chamber and experimental validation by using NiO/NiAl2O4," Applied Energy, Elsevier, vol. 211(C), pages 259-268.
    4. Siriwardane, Ranjani & Benincosa, William & Riley, Jarrett & Tian, Hanjing & Richards, George, 2016. "Investigation of reactions in a fluidized bed reactor during chemical looping combustion of coal/steam with copper oxide-iron oxide-alumina oxygen carrier," Applied Energy, Elsevier, vol. 183(C), pages 1550-1564.
    5. Basavaraja, R.J. & Jayanti, S., 2015. "Viability of fuel switching of a gas-fired power plant operating in chemical looping combustion mode," Energy, Elsevier, vol. 81(C), pages 213-221.
    6. Medrano, J.A. & Potdar, I. & Melendez, J. & Spallina, V. & Pacheco-Tanaka, D.A. & van Sint Annaland, M. & Gallucci, F., 2018. "The membrane-assisted chemical looping reforming concept for efficient H2 production with inherent CO2 capture: Experimental demonstration and model validation," Applied Energy, Elsevier, vol. 215(C), pages 75-86.
    7. Zhang, Hao & Liu, Xiangyu & Hong, Hui & Jin, Hongguang, 2018. "Characteristics of a 10 kW honeycomb reactor for natural gas fueled chemical-looping combustion," Applied Energy, Elsevier, vol. 213(C), pages 285-292.
    8. Galinsky, Nathan & Mishra, Amit & Zhang, Jia & Li, Fanxing, 2015. "Ca1−xAxMnO3 (A=Sr and Ba) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU)," Applied Energy, Elsevier, vol. 157(C), pages 358-367.
    9. Ping Wang & Nicholas Means & Dushyant Shekhawat & David Berry & Mehrdad Massoudi, 2015. "Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review," Energies, MDPI, vol. 8(10), pages 1-31, September.
    10. Galinsky, Nathan & Sendi, Marwan & Bowers, Lindsay & Li, Fanxing, 2016. "CaMn1−xBxO3−δ (B=Al, V, Fe, Co, and Ni) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU)," Applied Energy, Elsevier, vol. 174(C), pages 80-87.
    11. Bayham, Samuel & McGiveron, Omar & Tong, Andrew & Chung, Elena & Kathe, Mandar & Wang, Dawei & Zeng, Liang & Fan, Liang-Shih, 2015. "Parametric and dynamic studies of an iron-based 25-kWth coal direct chemical looping unit using sub-bituminous coal," Applied Energy, Elsevier, vol. 145(C), pages 354-363.
    12. Medrano, J.A. & Hamers, H.P. & Williams, G. & van Sint Annaland, M. & Gallucci, F., 2015. "NiO/CaAl2O4 as active oxygen carrier for low temperature chemical looping applications," Applied Energy, Elsevier, vol. 158(C), pages 86-96.
    13. Tian, Xin & Zhao, Haibo & Ma, Jinchen, 2017. "Cement bonded fine hematite and copper ore particles as oxygen carrier in chemical looping combustion," Applied Energy, Elsevier, vol. 204(C), pages 242-253.
    14. Jacobs, M. & Van Noyen, J. & Larring, Y. & Mccann, M. & Pishahang, M. & Amini, S. & Ortiz, M. & Galluci, F. & Sint-Annaland, M.V. & Tournigant, D. & Louradour, E. & Snijkers, F., 2015. "Thermal and mechanical behaviour of oxygen carrier materials for chemical looping combustion in a packed bed reactor," Applied Energy, Elsevier, vol. 157(C), pages 374-381.
    15. Samuel Bayham & Ronald Breault & Justin Weber, 2017. "Chemical Looping Combustion of Hematite Ore with Methane and Steam in a Fluidized Bed Reactor," Energies, MDPI, vol. 10(8), pages 1-22, August.
    16. Ma, Jinchen & Zhao, Haibo & Tian, Xin & Wei, Yijie & Rajendran, Sharmen & Zhang, Yongliang & Bhattacharya, Sankar & Zheng, Chuguang, 2015. "Chemical looping combustion of coal in a 5kWth interconnected fluidized bed reactor using hematite as oxygen carrier," Applied Energy, Elsevier, vol. 157(C), pages 304-313.
    17. Lucia Blas & Patrick Dutournié & Mejdi Jeguirim & Ludovic Josien & David Chiche & Stephane Bertholin & Arnold Lambert, 2017. "Numerical Modeling of Oxygen Carrier Performances (NiO/NiAl 2 O 4 ) for Chemical-Looping Combustion," Energies, MDPI, vol. 10(7), pages 1-16, June.
    18. Schmitz, Matthias & Linderholm, Carl Johan, 2016. "Performance of calcium manganate as oxygen carrier in chemical looping combustion of biochar in a 10kW pilot," Applied Energy, Elsevier, vol. 169(C), pages 729-737.
    19. Mayer, Karl & Penthor, Stefan & Pröll, Tobias & Hofbauer, Hermann, 2015. "The different demands of oxygen carriers on the reactor system of a CLC plant – Results of oxygen carrier testing in a 120kWth pilot plant," Applied Energy, Elsevier, vol. 157(C), pages 323-329.
    20. Kang, Dohyung & Lim, Hyun Suk & Lee, Minbeom & Lee, Jae W., 2018. "Syngas production on a Ni-enhanced Fe2O3/Al2O3 oxygen carrier via chemical looping partial oxidation with dry reforming of methane," Applied Energy, Elsevier, vol. 211(C), pages 174-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:162:y:2016:i:c:p:940-947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.