IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v159y2015icp362-369.html
   My bibliography  Save this article

Measured overall heat transfer coefficient of a suspended particle device switchable glazing

Author

Listed:
  • Ghosh, Aritra
  • Norton, Brian
  • Duffy, Aidan

Abstract

Suspended particle device (SPD) switchable glazing can change optical transmission from “opaque” state to “transparent” state in the presence of an alternating current (AC) power supply. It can be applied to control internal temperatures in buildings. Thermal characterisation of both SPD and same area of a double-glazing sample was accomplished using an outdoor test cell in Dublin, Ireland. The overall heat transfer coefficients (U value) were calculated for both systems from the experimental data. The average U values for SPD and double glazing samples were found to be 5.9W/m2K and 2.98W/m2K, respectively. Addition of double-glazing to this SPD switchable single glazing offered a U value of 1.99W/m2K.

Suggested Citation

  • Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2015. "Measured overall heat transfer coefficient of a suspended particle device switchable glazing," Applied Energy, Elsevier, vol. 159(C), pages 362-369.
  • Handle: RePEc:eee:appene:v:159:y:2015:i:c:p:362-369
    DOI: 10.1016/j.apenergy.2015.09.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915010892
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.09.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yohanis, Y.G. & Norton, B., 2002. "Useful solar heat gains in multi-zone non-domestic buildings as a function of orientation and thermal time constant," Renewable Energy, Elsevier, vol. 27(1), pages 87-95.
    2. Chae, Young Tae & Kim, Jeehwan & Park, Hongsik & Shin, Byungha, 2014. "Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells," Applied Energy, Elsevier, vol. 129(C), pages 217-227.
    3. Yohanis, Y.G & Norton, B, 2000. "A comparison of the analysis of the useful net solar gain for space heating, zone-by-zone and for a whole-building," Renewable Energy, Elsevier, vol. 19(3), pages 435-442.
    4. Tian, Cheng & Chen, Tingyao & Chung, Tse-ming, 2014. "Experimental and simulating examination of computer tools, Radlink and DOE2, for daylighting and energy simulation with venetian blinds," Applied Energy, Elsevier, vol. 124(C), pages 130-139.
    5. Miyazaki, T. & Akisawa, A. & Kashiwagi, T., 2005. "Energy savings of office buildings by the use of semi-transparent solar cells for windows," Renewable Energy, Elsevier, vol. 30(3), pages 281-304.
    6. Yohanis, Y. G. & Norton, B., 1999. "Utilization factor for building solar-heat gain for use in a simplified energy model," Applied Energy, Elsevier, vol. 63(4), pages 227-239, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Yanyi & Liu, Xin & Ming, Yang & Liu, Xiao & Mahon, Daniel & Wilson, Robin & Liu, Hao & Eames, Philip & Wu, Yupeng, 2021. "Energy and daylight performance of a smart window: Window integrated with thermotropic parallel slat-transparent insulation material," Applied Energy, Elsevier, vol. 293(C).
    2. Ghosh, Aritra & Norton, Brian, 2019. "Optimization of PV powered SPD switchable glazing to minimise probability of loss of power supply," Renewable Energy, Elsevier, vol. 131(C), pages 993-1001.
    3. Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2019. "Colour properties and glazing factors evaluation of multicrystalline based semi-transparent Photovoltaic-vacuum glazing for BIPV application," Renewable Energy, Elsevier, vol. 131(C), pages 730-736.
    4. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Danielle Pinette & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Industrialization and Thermal Performance of a New Unitized Water Flow Glazing Facade," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    5. Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2016. "Measured thermal performance of a combined suspended particle switchable device evacuated glazing," Applied Energy, Elsevier, vol. 169(C), pages 469-480.
    6. Ghosh, A. & Mallick, T.K., 2018. "Evaluation of colour properties due to switching behaviour of a PDLC glazing for adaptive building integration," Renewable Energy, Elsevier, vol. 120(C), pages 126-133.
    7. Mesloub, Abdelhakim & Ghosh, Aritra & Touahmia, Mabrouk & Albaqawy, Ghazy Abdullah & Alsolami, Badr M. & Ahriz, Atef, 2022. "Assessment of the overall energy performance of an SPD smart window in a hot desert climate," Energy, Elsevier, vol. 252(C).
    8. Ghosh, Aritra & Norton, Brian, 2018. "Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings," Renewable Energy, Elsevier, vol. 126(C), pages 1003-1031.
    9. Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2018. "Investigation of thermal and electrical performances of a combined semi-transparent PV-vacuum glazing," Applied Energy, Elsevier, vol. 228(C), pages 1591-1600.
    10. Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2017. "Effect of sky clearness index on transmission of evacuated (vacuum) glazing," Renewable Energy, Elsevier, vol. 105(C), pages 160-166.
    11. Cuce, Erdem & Cuce, Pinar Mert & Young, Chin-Huai, 2016. "Energy saving potential of heat insulation solar glass: Key results from laboratory and in-situ testing," Energy, Elsevier, vol. 97(C), pages 369-380.
    12. Nundy, Srijita & Ghosh, Aritra, 2020. "Thermal and visual comfort analysis of adaptive vacuum integrated switchable suspended particle device window for temperate climate," Renewable Energy, Elsevier, vol. 156(C), pages 1361-1372.
    13. Michalis Michael & Fabio Favoino & Qian Jin & Alessandra Luna-Navarro & Mauro Overend, 2023. "A Systematic Review and Classification of Glazing Technologies for Building Façades," Energies, MDPI, vol. 16(14), pages 1-47, July.
    14. Zhao, Xinpeng & Mofid, Sohrab Alex & Jelle, Bjørn Petter & Tan, Gang & Yin, Xiaobo & Yang, Ronggui, 2020. "Optically-switchable thermally-insulating VO2-aerogel hybrid film for window retrofits," Applied Energy, Elsevier, vol. 278(C).
    15. Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2016. "Behaviour of a SPD switchable glazing in an outdoor test cell with heat removal under varying weather conditions," Applied Energy, Elsevier, vol. 180(C), pages 695-706.
    16. Ghosh, Aritra, 2023. "Investigation of vacuum-integrated switchable polymer dispersed liquid crystal glazing for smart window application for less energy-hungry building," Energy, Elsevier, vol. 265(C).
    17. Cuce, Erdem, 2016. "Toward multi-functional PV glazing technologies in low/zero carbon buildings: Heat insulation solar glass – Latest developments and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1286-1301.
    18. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Danielle Pinette & Roberto-Alonso Gonzalez-Lezcano & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Application and Validation of a Dynamic Energy Simulation Tool: A Case Study with Water Flow Glazing Envelope," Energies, MDPI, vol. 13(12), pages 1-20, June.
    19. Chopra, K. & Tyagi, V.V. & Pandey, A.K. & Sari, Ahmet, 2018. "Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications," Applied Energy, Elsevier, vol. 228(C), pages 351-389.
    20. Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2016. "Measured thermal & daylight performance of an evacuated glazing using an outdoor test cell," Applied Energy, Elsevier, vol. 177(C), pages 196-203.
    21. Zeng, Zhaoyun & Augenbroe, Godfried & Chen, Jianli, 2022. "Realization of bi-level optimization of adaptive building envelope with a finite-difference model featuring short execution time and versatility," Energy, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sehyun Tak & Soomin Woo & Jiyoung Park & Sungjin Park, 2017. "Effect of the Changeable Organic Semi-Transparent Solar Cell Window on Building Energy Efficiency and User Comfort," Sustainability, MDPI, vol. 9(6), pages 1-14, June.
    2. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    3. Halawa, Edward & Ghaffarianhoseini, Amirhosein & Ghaffarianhoseini, Ali & Trombley, Jeremy & Hassan, Norhaslina & Baig, Mirza & Yusoff, Safiah Yusmah & Azzam Ismail, Muhammad, 2018. "A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2147-2161.
    4. Peng, Jinqing & Curcija, Dragan C. & Thanachareonkit, Anothai & Lee, Eleanor S. & Goudey, Howdy & Selkowitz, Stephen E., 2019. "Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window," Applied Energy, Elsevier, vol. 242(C), pages 854-872.
    5. Peng, Jinqing & Curcija, Dragan C. & Lu, Lin & Selkowitz, Stephen E. & Yang, Hongxing & Zhang, Weilong, 2016. "Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate," Applied Energy, Elsevier, vol. 165(C), pages 345-356.
    6. María Herrando & Alba Ramos, 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review," Energies, MDPI, vol. 15(9), pages 1-28, April.
    7. Wang, Meng & Peng, Jinqing & Li, Nianping & Yang, Hongxing & Wang, Chunlei & Li, Xue & Lu, Tao, 2017. "Comparison of energy performance between PV double skin facades and PV insulating glass units," Applied Energy, Elsevier, vol. 194(C), pages 148-160.
    8. Cheng, Yuanda & Gao, Min & Dong, Jiankai & Jia, Jie & Zhao, Xudong & Li, Guiqiang, 2018. "Investigation on the daylight and overall energy performance of semi-transparent photovoltaic facades in cold climatic regions of China," Applied Energy, Elsevier, vol. 232(C), pages 517-526.
    9. Refat, Khalid H. & Sajjad, Redwan N., 2020. "Prospect of achieving net-zero energy building with semi-transparent photovoltaics: A device to system level perspective," Applied Energy, Elsevier, vol. 279(C).
    10. Wang, Meng & Peng, Jinqing & Li, Nianping & Lu, Lin & Ma, Tao & Yang, Hongxing, 2016. "Assessment of energy performance of semi-transparent PV insulating glass units using a validated simulation model," Energy, Elsevier, vol. 112(C), pages 538-548.
    11. Li, Xian & Lin, Alexander & Young, Chin-Huai & Dai, Yanjun & Wang, Chi-Hwa, 2019. "Energetic and economic evaluation of hybrid solar energy systems in a residential net-zero energy building," Applied Energy, Elsevier, vol. 254(C).
    12. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Joaquim Romaní & Alba Ramos & Jaume Salom, 2022. "Review of Transparent and Semi-Transparent Building-Integrated Photovoltaics for Fenestration Application Modeling in Building Simulations," Energies, MDPI, vol. 15(9), pages 1-30, April.
    14. Yang, Tingting & Athienitis, Andreas K., 2016. "A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 886-912.
    15. Wu, Zhenghong & Zhang, Ling & Wu, Jing & Liu, Zhongbing, 2022. "Experimental and numerical study on the annual performance of semi-transparent photovoltaic glazing in different climate zones," Energy, Elsevier, vol. 240(C).
    16. Skandalos, Nikolaos & Karamanis, Dimitris, 2015. "PV glazing technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 306-322.
    17. Colclough, Shane & McGrath, Teresa, 2015. "Net energy analysis of a solar combi system with Seasonal Thermal Energy Store," Applied Energy, Elsevier, vol. 147(C), pages 611-616.
    18. Cristina Cornaro & Ludovica Renzi & Marco Pierro & Aldo Di Carlo & Alessandro Guglielmotti, 2018. "Thermal and Electrical Characterization of a Semi-Transparent Dye-Sensitized Photovoltaic Module under Real Operating Conditions," Energies, MDPI, vol. 11(1), pages 1-16, January.
    19. Li, Danny H.W. & Lam, Tony N.T. & Chan, Wilco W.H. & Mak, Ada H.L., 2009. "Energy and cost analysis of semi-transparent photovoltaic in office buildings," Applied Energy, Elsevier, vol. 86(5), pages 722-729, May.
    20. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:159:y:2015:i:c:p:362-369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.