IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v108y2013icp248-260.html
   My bibliography  Save this article

The challenges and strategies of butanol application in conventional engines: The sensitivity study of ignition and valve timing

Author

Listed:
  • Deng, Banglin
  • Yang, Jing
  • Zhang, Daming
  • Feng, Renhua
  • Fu, Jianqin
  • Liu, Jingping
  • Li, Ke
  • Liu, Xiaoqiang

Abstract

The study approach of this paper is to combine experiment and simulation on using butanol as fuel in gasoline engine. First, experiments were performed under full load on a single cylinder spark ignition engine fueled with 35%vol butanol–gasoline blend and the pure gasoline, respectively. The performance and operating parameters were measured. The experimental results showed that with the butanol addition, the ignition timing could be advanced without obvious knocking for higher combustion efficiency. The engine presented superior performance in power, fuel consumption, HC and CO emissions, but deteriorated the NOx emissions largely. Then, a GT-Power simulation model was set-up and calibrated by experimental data. Therefore, the simulation model could be used to study the valve timing impact on engine performance. The simulation results indicated that the enlargement of overlap presented a good “trade-off” effect, such as, decreased emissions (especially for NOx), without deteriorating the torque and fuel consumption too much (except for extremity speeds of 3000rpm and 8500rpm, which are not frequently-used in real road driving). The results also indicated that the HC and CO emissions depend more on the fuel properties. The power and NOx emissions depend more on the operating parameters. And the fuel consumption is in between.

Suggested Citation

  • Deng, Banglin & Yang, Jing & Zhang, Daming & Feng, Renhua & Fu, Jianqin & Liu, Jingping & Li, Ke & Liu, Xiaoqiang, 2013. "The challenges and strategies of butanol application in conventional engines: The sensitivity study of ignition and valve timing," Applied Energy, Elsevier, vol. 108(C), pages 248-260.
  • Handle: RePEc:eee:appene:v:108:y:2013:i:c:p:248-260
    DOI: 10.1016/j.apenergy.2013.03.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913002043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.03.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maiboom, Alain & Tauzia, Xavier & Hétet, Jean-François, 2008. "Experimental study of various effects of exhaust gas recirculation (EGR) on combustion and emissions of an automotive direct injection diesel engine," Energy, Elsevier, vol. 33(1), pages 22-34.
    2. Irimescu, Adrian, 2011. "Fuel conversion efficiency of a port injection engine fueled with gasoline–isobutanol blends," Energy, Elsevier, vol. 36(5), pages 3030-3035.
    3. Fontana, G. & Galloni, E., 2009. "Variable valve timing for fuel economy improvement in a small spark-ignition engine," Applied Energy, Elsevier, vol. 86(1), pages 96-105, January.
    4. Tornatore, Cinzia & Marchitto, Luca & Valentino, Gerardo & Esposito Corcione, Felice & Merola, Simona Silvia, 2012. "Optical diagnostics of the combustion process in a PFI SI boosted engine fueled with butanol–gasoline blend," Energy, Elsevier, vol. 45(1), pages 277-287.
    5. Irimescu, Adrian, 2012. "Performance and fuel conversion efficiency of a spark ignition engine fueled with iso-butanol," Applied Energy, Elsevier, vol. 96(C), pages 477-483.
    6. Jin, Chao & Yao, Mingfa & Liu, Haifeng & Lee, Chia-fon F. & Ji, Jing, 2011. "Progress in the production and application of n-butanol as a biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4080-4106.
    7. Peng, Haiyong & Cui, Yi & Shi, Lei & Deng, Kangyao, 2008. "Effects of exhaust gas recirculation (EGR) on combustion and emissions during cold start of direct injection (DI) diesel engine," Energy, Elsevier, vol. 33(3), pages 471-479.
    8. Demirbas, Ayhan, 2009. "Political, economic and environmental impacts of biofuels: A review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 108-117, November.
    9. Shota Atsumi & Taizo Hanai & James C. Liao, 2008. "Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels," Nature, Nature, vol. 451(7174), pages 86-89, January.
    10. Zamboni, Giorgio & Capobianco, Massimo, 2012. "Experimental study on the effects of HP and LP EGR in an automotive turbocharged diesel engine," Applied Energy, Elsevier, vol. 94(C), pages 117-128.
    11. Fathi, Morteza & Saray, R. Khoshbakhti & Checkel, M. David, 2011. "The influence of Exhaust Gas Recirculation (EGR) on combustion and emissions of n-heptane/natural gas fueled Homogeneous Charge Compression Ignition (HCCI) engines," Applied Energy, Elsevier, vol. 88(12), pages 4719-4724.
    12. Sher, E. & Bar-Kohany, T., 2002. "Optimization of variable valve timing for maximizing performance of an unthrottled SI engine—a theoretical study," Energy, Elsevier, vol. 27(8), pages 757-775.
    13. Tsolakis, A. & Megaritis, A. & Wyszynski, M.L. & Theinnoi, K., 2007. "Engine performance and emissions of a diesel engine operating on diesel-RME (rapeseed methyl ester) blends with EGR (exhaust gas recirculation)," Energy, Elsevier, vol. 32(11), pages 2072-2080.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Banglin & Fu, Jianqin & Zhang, Daming & Yang, Jing & Feng, Renhua & Liu, Jingping & Li, Ke & Liu, Xiaoqiang, 2013. "The heat release analysis of bio-butanol/gasoline blends on a high speed SI (spark ignition) engine," Energy, Elsevier, vol. 60(C), pages 230-241.
    2. Pei, Zhongwen & Liu, Kaimin & Luo, Wusheng & Yang, Jing & Li, Yangtao, 2023. "Experimental study on the effect of aftertreatment system on the energy flow pattern and emission reduction of a natural gas engine under world harmonized transient cycle," Energy, Elsevier, vol. 263(PB).
    3. Wei, Haiqiao & Feng, Dengquan & Pan, Jiaying & Shao, Aifang & Pan, Mingzhang, 2017. "Knock characteristics of SI engine fueled with n-butanol in combination with different EGR rate," Energy, Elsevier, vol. 118(C), pages 190-196.
    4. Feng, Renhua & Fu, Jianqin & Yang, Jing & Wang, Yi & Li, Yangtao & Deng, Banglin & Liu, Jingping & Zhang, Daming, 2015. "Combustion and emissions study on motorcycle engine fueled with butanol-gasoline blend," Renewable Energy, Elsevier, vol. 81(C), pages 113-122.
    5. Wang, Yi & He, Guanzhang & Huang, Haozhong & Guo, Xiaoyu & Xing, Kongzhao & Liu, Songtao & Tu, Zhanfei & Xia, Qi, 2023. "Thermodynamic and exergy analysis of high compression ratio coupled with late intake valve closing to improve thermal efficiency of two-stage turbocharged diesel engines," Energy, Elsevier, vol. 268(C).
    6. Irimescu, Adrian & Vasiu, Gabriel & Tordai, Gavrilă Trif, 2014. "Performance and emissions of a small scale generator powered by a spark ignition engine with adaptive fuel injection control," Applied Energy, Elsevier, vol. 121(C), pages 196-206.
    7. Rezaei, Javad & Shahbakhti, Mahdi & Bahri, Bahram & Aziz, Azhar Abdul, 2015. "Performance prediction of HCCI engines with oxygenated fuels using artificial neural networks," Applied Energy, Elsevier, vol. 138(C), pages 460-473.
    8. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    9. Liu, Kaimin & Fu, Jianqin & Deng, Banglin & Yang, Jing & Tang, Qijun & Liu, Jingping, 2014. "The influences of pressure and temperature on laminar flame propagations of n-butanol, iso-octane and their blends," Energy, Elsevier, vol. 73(C), pages 703-715.
    10. Pauras Sawant & Michael Warstler & Saiful Bari, 2018. "Exhaust Tuning of an Internal Combustion Engine by the Combined Effects of Variable Exhaust Pipe Diameter and an Exhaust Valve Timing System," Energies, MDPI, vol. 11(6), pages 1-16, June.
    11. Jafari, Yadollah & Amiri, Hamid & Karimi, Keikhosro, 2016. "Acetone pretreatment for improvement of acetone, butanol, and ethanol production from sweet sorghum bagasse," Applied Energy, Elsevier, vol. 168(C), pages 216-225.
    12. Wei, Haiqiao & Feng, Dengquan & Pan, Mingzhang & Pan, JiaYing & Rao, XiaoKang & Gao, Dongzhi, 2016. "Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine," Applied Energy, Elsevier, vol. 175(C), pages 346-355.
    13. Elfasakhany, Ashraf, 2017. "Investigations on performance and pollutant emissions of spark-ignition engines fueled with n-butanol–, isobutanol–, ethanol–, methanol–, and acetone–gasoline blends: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 404-413.
    14. Fu, Jianqin & Deng, Banglin & Liu, Xiaoqiang & Shu, Jun & Xu, Ying & Liu, Jingping, 2020. "The experimental study on transient emissions and engine behaviors of a sporting motorcycle under World Motorcycle Test Cycle," Energy, Elsevier, vol. 211(C).
    15. Sayin, Cenk & Balki, Mustafa Kemal, 2015. "Effect of compression ratio on the emission, performance and combustion characteristics of a gasoline engine fueled with iso-butanol/gasoline blends," Energy, Elsevier, vol. 82(C), pages 550-555.
    16. Yang, Bo & Xi, Chengxun & Wei, Xing & Zeng, Ke & Lai, Ming-Chia, 2015. "Parametric investigation of natural gas port injection and diesel pilot injection on the combustion and emissions of a turbocharged common rail dual-fuel engine at low load," Applied Energy, Elsevier, vol. 143(C), pages 130-137.
    17. Elfasakhany, Ashraf, 2018. "Exhaust emissions and performance of ternary iso-butanol–bio-methanol–gasoline and n-butanol–bio-ethanol–gasoline fuel blends in spark-ignition engines: Assessment and comparison," Energy, Elsevier, vol. 158(C), pages 830-844.
    18. Muhamad Norkhizan Abdullah & Ahmad Fitri Yusop & Rizalman Mamat & Mohd Adnin Hamidi & Kumarasamy Sudhakar & Talal Yusaf, 2023. "Sustainable Biofuels from First Three Alcohol Families: A Critical Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    19. Yuan, Zhipeng & Fu, Jianqin & Liu, Qi & Ma, Yinjie & Zhan, Zhangsong, 2018. "Quantitative study on influence factors of power performance of variable valve timing (VVT) engines and correction of its governing equation," Energy, Elsevier, vol. 157(C), pages 314-326.
    20. Liu, Kaimin & Li, Yangtao & Yang, Jing & Deng, Banglin & Feng, Renhua & Huang, Yanjun, 2018. "Comprehensive study of key operating parameters on combustion characteristics of butanol-gasoline blends in a high speed SI engine," Applied Energy, Elsevier, vol. 212(C), pages 13-32.
    21. Han, Xiaoye & Yang, Zhenyi & Wang, Meiping & Tjong, Jimi & Zheng, Ming, 2017. "Clean combustion of n-butanol as a next generation biofuel for diesel engines," Applied Energy, Elsevier, vol. 198(C), pages 347-359.
    22. Singh, Suraj Bhan & Dhar, Atul & Agarwal, Avinash Kumar, 2015. "Technical feasibility study of butanol–gasoline blends for powering medium-duty transportation spark ignition engine," Renewable Energy, Elsevier, vol. 76(C), pages 706-716.
    23. Feng, Hongqing & Liu, Daojian & Yang, Xiaoxi & An, Ming & Zhang, Weiwen & Zhang, Xiaodong, 2016. "Availability analysis of using iso-octane/n-butanol blends in spark-ignition engines," Renewable Energy, Elsevier, vol. 96(PA), pages 281-294.
    24. Ashraf Elfasakhany, 2021. "State of Art of Using Biofuels in Spark Ignition Engines," Energies, MDPI, vol. 14(3), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Banglin & Fu, Jianqin & Zhang, Daming & Yang, Jing & Feng, Renhua & Liu, Jingping & Li, Ke & Liu, Xiaoqiang, 2013. "The heat release analysis of bio-butanol/gasoline blends on a high speed SI (spark ignition) engine," Energy, Elsevier, vol. 60(C), pages 230-241.
    2. Liu, Kaimin & Fu, Jianqin & Deng, Banglin & Yang, Jing & Tang, Qijun & Liu, Jingping, 2014. "The influences of pressure and temperature on laminar flame propagations of n-butanol, iso-octane and their blends," Energy, Elsevier, vol. 73(C), pages 703-715.
    3. Liu, Kaimin & Li, Yangtao & Yang, Jing & Deng, Banglin & Feng, Renhua & Huang, Yanjun, 2018. "Comprehensive study of key operating parameters on combustion characteristics of butanol-gasoline blends in a high speed SI engine," Applied Energy, Elsevier, vol. 212(C), pages 13-32.
    4. Elfasakhany, Ashraf, 2017. "Investigations on performance and pollutant emissions of spark-ignition engines fueled with n-butanol–, isobutanol–, ethanol–, methanol–, and acetone–gasoline blends: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 404-413.
    5. Mwangi, John Kennedy & Lee, Wen-Jhy & Chang, Yu-Cheng & Chen, Chia-Yang & Wang, Lin-Chi, 2015. "An overview: Energy saving and pollution reduction by using green fuel blends in diesel engines," Applied Energy, Elsevier, vol. 159(C), pages 214-236.
    6. Rajasekar, E. & Murugesan, A. & Subramanian, R. & Nedunchezhian, N., 2010. "Review of NOx reduction technologies in CI engines fuelled with oxygenated biomass fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2113-2121, September.
    7. Merola, Simona Silvia & Tornatore, Cinzia & Irimescu, Adrian & Marchitto, Luca & Valentino, Gerardo, 2016. "Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline," Energy, Elsevier, vol. 108(C), pages 50-62.
    8. Feng, Hongqing & Liu, Daojian & Yang, Xiaoxi & An, Ming & Zhang, Weiwen & Zhang, Xiaodong, 2016. "Availability analysis of using iso-octane/n-butanol blends in spark-ignition engines," Renewable Energy, Elsevier, vol. 96(PA), pages 281-294.
    9. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.
    10. Ashraf Elfasakhany, 2021. "State of Art of Using Biofuels in Spark Ignition Engines," Energies, MDPI, vol. 14(3), pages 1-26, February.
    11. Thangaraja, J. & Kannan, C., 2016. "Effect of exhaust gas recirculation on advanced diesel combustion and alternate fuels - A review," Applied Energy, Elsevier, vol. 180(C), pages 169-184.
    12. Han, Xiaoye & Yang, Zhenyi & Wang, Meiping & Tjong, Jimi & Zheng, Ming, 2017. "Clean combustion of n-butanol as a next generation biofuel for diesel engines," Applied Energy, Elsevier, vol. 198(C), pages 347-359.
    13. Elfasakhany, Ashraf, 2018. "Exhaust emissions and performance of ternary iso-butanol–bio-methanol–gasoline and n-butanol–bio-ethanol–gasoline fuel blends in spark-ignition engines: Assessment and comparison," Energy, Elsevier, vol. 158(C), pages 830-844.
    14. Feng, Renhua & Fu, Jianqin & Yang, Jing & Wang, Yi & Li, Yangtao & Deng, Banglin & Liu, Jingping & Zhang, Daming, 2015. "Combustion and emissions study on motorcycle engine fueled with butanol-gasoline blend," Renewable Energy, Elsevier, vol. 81(C), pages 113-122.
    15. Han, S.-H. & Cho, D.H. & Kim, Y.H. & Shin, S.-J., 2013. "Biobutanol production from 2-year-old willow biomass by acid hydrolysis and acetone–butanol–ethanol fermentation," Energy, Elsevier, vol. 61(C), pages 13-17.
    16. Zhang, Ji & Jing, Wei & Roberts, William L. & Fang, Tiegang, 2013. "Effects of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated engine conditions," Energy, Elsevier, vol. 57(C), pages 722-732.
    17. Dhamodaran, Gopinath & Esakkimuthu, Ganapathy Sundaram & Pochareddy, Yashwanth Kutti & Sivasubramanian, Harish, 2017. "Investigation of n-butanol as fuel in a four-cylinder MPFI SI engine," Energy, Elsevier, vol. 125(C), pages 726-735.
    18. Liu, Yang & Cheng, Xiaobei & Qin, Longjiang & Wang, Xin & Yao, Junjie & Wu, Hui, 2020. "Experimental investigation on soot formation characteristics of n-heptane/butanol isomers blends in laminar diffusion flames," Energy, Elsevier, vol. 211(C).
    19. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    20. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:108:y:2013:i:c:p:248-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.