IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v276y2016icp407-416.html
   My bibliography  Save this article

L2–L∞ filtering for stochastic systems driven by Poisson processes and Wiener processes

Author

Listed:
  • Song, Bo
  • Zhang, Ya
  • Park, Ju H.
  • Huang, Huan

Abstract

This paper investigates the L2–L∞ filtering problem for stochastic systems driven by Poisson processes and Wiener processes. Firstly, this paper presents an approach to transform the expectation of stochastic integral with respect to Poisson process into the expectation of Lebesgue integral by the martingale theory. Then, based on this, a filter is designed to guarantee that the filtering error system is mean-square asymptotically stable and its L2–L∞ performance satisfies a prescribed level. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme.

Suggested Citation

  • Song, Bo & Zhang, Ya & Park, Ju H. & Huang, Huan, 2016. "L2–L∞ filtering for stochastic systems driven by Poisson processes and Wiener processes," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 407-416.
  • Handle: RePEc:eee:apmaco:v:276:y:2016:i:c:p:407-416
    DOI: 10.1016/j.amc.2015.12.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031530014X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.12.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    2. Ken Sennewald & Klaus Wälde, 2006. "“Itô's Lemma” and the Bellman Equation for Poisson Processes: An Applied View," Journal of Economics, Springer, vol. 89(1), pages 1-36, October.
    3. Gene M. Grossman & Elhanan Helpman, 1991. "Quality Ladders in the Theory of Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(1), pages 43-61.
    4. Klaus Wälde, 2005. "Endogenous Growth Cycles," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 46(3), pages 867-894, August.
    5. Steger, Thomas M., 2005. "Stochastic growth under Wiener and Poisson uncertainty," Economics Letters, Elsevier, vol. 86(3), pages 311-316, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jie & Ma, Lifeng & Liu, Yurong & Lyu, Ming & Alsaadi, Fuad E. & Bo, Yuming, 2017. "H∞ and l2−l∞ finite-horizon filtering with randomly occurring gain variations and quantization effects," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 171-187.
    2. Li, Yueyang & Liu, Shuai & Zhong, Maiying & Ding, Steven X., 2018. "State estimation for stochastic discrete-time systems with multiplicative noises and unknown inputs over fading channels," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 116-130.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phillips, Kerk L. & Wrase, Jeff, 2006. "Is Schumpeterian `creative destruction' a plausible source of endogenous real business cycle shocks?," Journal of Economic Dynamics and Control, Elsevier, vol. 30(11), pages 1885-1913, November.
    2. Guido Cozzi & Silvia Galli, 2009. "Upstream Innovation Protection: Common Law Evolution and the Dynamics of Wage Inequality," Working Papers 2009_20, Business School - Economics, University of Glasgow.
    3. Tsuboi, Mizuki, 2019. "Resource scarcity, technological progress, and stochastic growth," Economic Modelling, Elsevier, vol. 81(C), pages 73-88.
    4. Matthias Birkner & Niklas Scheuer & Klaus Wälde, 2023. "The dynamics of Pareto distributed wealth in a small open economy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 76(2), pages 607-644, August.
    5. Ken Sennewald & Klaus Wälde, 2006. "“Itô's Lemma” and the Bellman Equation for Poisson Processes: An Applied View," Journal of Economics, Springer, vol. 89(1), pages 1-36, October.
    6. Wälde, Klaus, 2011. "Production technologies in stochastic continuous time models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 616-622, April.
    7. Sennewald, Ken & Wälde, Klaus, 2005. ""Itô's Lemma" and the Bellman equation: An applied view," Dresden Discussion Paper Series in Economics 04/05, Technische Universität Dresden, Faculty of Business and Economics, Department of Economics.
    8. Sennewald, Ken, 2005. "Controlled Stochastic Differential Equations under Poisson Uncertainty and with Unbounded Utility," Dresden Discussion Paper Series in Economics 03/05, Technische Universität Dresden, Faculty of Business and Economics, Department of Economics.
    9. Funk, Peter, 2008. "Entry and growth in a perfectly competitive vintage model," Journal of Economic Theory, Elsevier, vol. 138(1), pages 211-236, January.
    10. Nikolay Chernyshev, 2017. "R&D Cyclicality and Composition Effects: A Unifying Approach," CDMA Working Paper Series 201705, Centre for Dynamic Macroeconomic Analysis.
    11. Liu, Taoxiong & Liu, Zhuohao, 2022. "A growth model with endogenous technological revolutions and cycles," Journal of Mathematical Economics, Elsevier, vol. 103(C).
    12. Sennewald, Ken, 2007. "Controlled stochastic differential equations under Poisson uncertainty and with unbounded utility," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1106-1131, April.
    13. Motoh Tsujimura & Hidekazu Yoshioka, 2023. "A robust consumption model when the intensity of technological progress is ambiguous," Mathematics and Financial Economics, Springer, volume 17, number 2, June.
    14. Bei Li & Jie Zhang, 2011. "Subsidies in an Economy with Endogenous Cycles Over Neoclassical Investment and Neo-Schumpeterian Innovation Regimes," Economics Discussion / Working Papers 11-23, The University of Western Australia, Department of Economics.
    15. Chu, Angus C. & Cozzi, Guido & Furukawa, Yuichi, 2016. "Unions, innovation and cross-country wage inequality," Journal of Economic Dynamics and Control, Elsevier, vol. 64(C), pages 104-118.
    16. Patrick Legros & Andrew F. Newman & Eugenio Proto, 2014. "Smithian Growth through Creative Organization," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 796-811, December.
    17. Guido Cozzi, 2009. "Intellectual Property, Innovation, And Growth: Introduction To The Special Issue," Scottish Journal of Political Economy, Scottish Economic Society, vol. 56(4), pages 383-389, September.
    18. Chu, Angus C. & Pan, Shiyuan, 2013. "The Escape-Infringement Effect Of Blocking Patents On Innovation And Economic Growth," Macroeconomic Dynamics, Cambridge University Press, vol. 17(4), pages 955-969, June.
    19. Aghion, Philippe & Akcigit, Ufuk & Howitt, Peter, 2014. "What Do We Learn From Schumpeterian Growth Theory?," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 0, pages 515-563, Elsevier.
    20. S. Luckraz, 2008. "Process Spillovers and Growth," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 315-335, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:276:y:2016:i:c:p:407-416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.