IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v287y2023ics0378377423003050.html
   My bibliography  Save this article

Multi-objective deficit drip irrigation optimization of citrus yield, fruit quality and water use efficiency using NSGA-II in seasonal arid area of Southwest China

Author

Listed:
  • Chen, Fei
  • Cui, Ningbo
  • Jiang, Shouzheng
  • Wang, Zhihui
  • Li, Hongping
  • Lv, Min
  • Wang, Yaosheng
  • Gong, Daozhi
  • Zhao, Lu

Abstract

Precision irrigation management is the key to saving water, improving fruit quality and increasing yield of citrus. In this study, six water-yield models and three water-fruit quality models were proposed based on 4-year field data. Then, six scenarios were set with crop total available water (CTW) from 550 to 800 mm at intervals of 50 mm, and a simulation optimization model coupling water-yield, water-fruit quality models and NSGA-II was developed to optimize water allocation strategies. The results showed that six water-yield models performed well in predicting citrus yield, especially Minhas model (R2=0.81). Three water-fruit quality models could well predict the physical quality of citrus fruit (R2=0.72–0.92), but only the Q-Rao model could accurately predict the chemical quality due to its development considering the response processes of fruit quality to deficit irrigation. Therefore, Minhas and Q-Rao models were recommended to predict citrus yield and fruit quality, respectively. The optimization results showed that the optimal water allocation strategy under CTW= 630 mm produced an acceptable yield while improving fruit chemical quality and water use efficiency. When CTW was greater than 630 mm, the optimal water allocation strategy had little difference. Therefore, the optimal water allocation strategy under CTW= 630 mm, which was 14, 104, 325, and 187 mm at bud bust to flowering stage, young fruit stage, fruit expansion stage, and fruit maturation stage, respectively, was recommended to be used under sufficient water resources conditions (CTW ≥ 630 mm). When CTW was between 550 and 630 mm, the optimal water allocation strategy changed. As a result, the optimal water allocation strategy was chosen based on the findings as well as the actual local CTW under limited water resource conditions (CTW = 550–630 mm). The findings of this study will be useful in developing appropriate irrigation strategies in Southwest China, to achieve efficient and sustainable citrus production.

Suggested Citation

  • Chen, Fei & Cui, Ningbo & Jiang, Shouzheng & Wang, Zhihui & Li, Hongping & Lv, Min & Wang, Yaosheng & Gong, Daozhi & Zhao, Lu, 2023. "Multi-objective deficit drip irrigation optimization of citrus yield, fruit quality and water use efficiency using NSGA-II in seasonal arid area of Southwest China," Agricultural Water Management, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:agiwat:v:287:y:2023:i:c:s0378377423003050
    DOI: 10.1016/j.agwat.2023.108440
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423003050
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108440?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ballester, C. & Castel, J. & Intrigliolo, D.S. & Castel, J.R., 2011. "Response of Clementina de Nules citrus trees to summer deficit irrigation. Yield components and fruit composition," Agricultural Water Management, Elsevier, vol. 98(6), pages 1027-1032, April.
    2. Zhang, Xianbo & Yang, Hui & Shukla, Manoj K. & Du, Taisheng, 2023. "Proposing a crop-water-salt production function based on plant response to stem water potential," Agricultural Water Management, Elsevier, vol. 278(C).
    3. Silveira, Laís Karina & Pavão, Glaucia Cristina & dos Santos Dias, Carlos Tadeu & Quaggio, José Antonio & Pires, Regina Célia de Matos, 2020. "Deficit irrigation effect on fruit yield, quality and water use efficiency: A long-term study on Pêra-IAC sweet orange," Agricultural Water Management, Elsevier, vol. 231(C).
    4. Rao, N. H. & Sarma, P. B. S. & Chander, Subhash, 1988. "A simple dated water-production function for use in irrigated agriculture," Agricultural Water Management, Elsevier, vol. 13(1), pages 25-32, April.
    5. Lu, Jia & Shao, Guangcheng & Cui, Jintao & Wang, Xiaojun & Keabetswe, Larona, 2019. "Yield, fruit quality and water use efficiency of tomato for processing under regulated deficit irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 222(C), pages 301-312.
    6. Paredes, P. & Rodrigues, G.C. & Alves, I. & Pereira, L.S., 2014. "Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies," Agricultural Water Management, Elsevier, vol. 135(C), pages 27-39.
    7. Rallo, Giovanni & González-Altozano, Pablo & Manzano-Juárez, Juan & Provenzano, Giuseppe, 2017. "Using field measurements and FAO-56 model to assess the eco-physiological response of citrus orchards under regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 180(PA), pages 136-147.
    8. García-Tejero, I. & Romero-Vicente, R. & Jiménez-Bocanegra, J.A. & Martínez-García, G. & Durán-Zuazo, V.H. & Muriel-Fernández, J.L., 2010. "Response of citrus trees to deficit irrigation during different phenological periods in relation to yield, fruit quality, and water productivity," Agricultural Water Management, Elsevier, vol. 97(5), pages 689-699, May.
    9. Zang, Zhennan & Liang, Jiaping & Yang, Qiliang & Zhou, Ningshan & Li, Na & Liu, Xiaogang & Liu, Yanwei & Tan, Shuai & Chen, Shaomin & Tang, Zhenya, 2022. "An adaptive abiotic stresses strategy to improve water use efficiency, quality, and economic benefits of Panax notoginseng: Deficit irrigation combined with sodium chloride," Agricultural Water Management, Elsevier, vol. 274(C).
    10. Zhong, Yun & Fei, Liangjun & Li, Yibo & Zeng, Jian & Dai, Zhiguang, 2019. "Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 222(C), pages 221-230.
    11. Chen, Fei & Cui, Ningbo & Jiang, Shouzheng & Li, Hongping & Wang, Yaosheng & Gong, Daozhi & Hu, Xiaotao & Zhao, Lu & Liu, Chunwei & Qiu, Rangjian, 2022. "Effects of water deficit at different growth stages under drip irrigation on fruit quality of citrus in the humid areas of South China," Agricultural Water Management, Elsevier, vol. 262(C).
    12. Song, Xingyang & Zhou, Guangsheng & He, Qijing & Zhou, Huailin, 2020. "Stomatal limitations to photosynthesis and their critical Water conditions in different growth stages of maize under water stress," Agricultural Water Management, Elsevier, vol. 241(C).
    13. Panigrahi, P. & Sharma, R.K. & Hasan, M. & Parihar, S.S., 2014. "Deficit irrigation scheduling and yield prediction of ‘Kinnow’ mandarin (Citrus reticulate Blanco) in a semiarid region," Agricultural Water Management, Elsevier, vol. 140(C), pages 48-60.
    14. Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Qiu, Rangjian & Chen, Renqiang & Gu, Feng, 2014. "Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition," Agricultural Water Management, Elsevier, vol. 146(C), pages 131-148.
    15. Foster, T. & Brozović, N., 2018. "Simulating Crop-Water Production Functions Using Crop Growth Models to Support Water Policy Assessments," Ecological Economics, Elsevier, vol. 152(C), pages 9-21.
    16. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).
    17. Linker, Raphael & Ioslovich, Ilya & Sylaios, Georgios & Plauborg, Finn & Battilani, Adriano, 2016. "Optimal model-based deficit irrigation scheduling using AquaCrop: A simulation study with cotton, potato and tomato," Agricultural Water Management, Elsevier, vol. 163(C), pages 236-243.
    18. Wu, Hui & Yue, Qiong & Guo, Ping & Xu, Xiaoyu & Huang, Xi, 2022. "Improving the AquaCrop model to achieve direct simulation of evapotranspiration under nitrogen stress and joint simulation-optimization of irrigation and fertilizer schedules," Agricultural Water Management, Elsevier, vol. 266(C).
    19. Zhang, Shaohui & Fan, Junliang & Zhang, Fucang & Wang, Haidong & Yang, Ling & Sun, Xin & Cheng, Minghui & Cheng, Houliang & Li, Zhijun, 2022. "Optimizing irrigation amount and potassium rate to simultaneously improve tuber yield, water productivity and plant potassium accumulation of drip-fertigated potato in northwest China," Agricultural Water Management, Elsevier, vol. 264(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).
    2. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    3. Li, Dazhi & Hendricks Franssen, Harrie-Jan & Han, Xujun & Jiménez-Bello, Miguel Angel & Martínez Alzamora, Fernando & Vereecken, Harry, 2018. "Evaluation of an operational real-time irrigation scheduling scheme for drip irrigated citrus fields in Picassent, Spain," Agricultural Water Management, Elsevier, vol. 208(C), pages 465-477.
    4. Wen, Shenglin & Cui, Ningbo & Gong, Daozhi & Liu, Chunwei & Xing, Liwen & Wu, Zongjun & Wang, Zhihui & Wang, Jiaxin, 2023. "A global meta-analysis of yield and water productivity of woody, herbaceous and vine fruits under deficit irrigation," Agricultural Water Management, Elsevier, vol. 287(C).
    5. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    6. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).
    7. Baoying Shan & Ping Guo & Shanshan Guo & Zhong Li, 2019. "A Price-Forecast-Based Irrigation Scheduling Optimization Model under the Response of Fruit Quality and Price to Water," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    8. Xufeng Li & Juanjuan Ma & Lijian Zheng & Jinping Chen & Xihuan Sun & Xianghong Guo, 2022. "Optimization of the Regulated Deficit Irrigation Strategy for Greenhouse Tomato Based on the Fuzzy Borda Model," Agriculture, MDPI, vol. 12(3), pages 1-16, February.
    9. Foster, T. & Brozović, N., 2018. "Simulating Crop-Water Production Functions Using Crop Growth Models to Support Water Policy Assessments," Ecological Economics, Elsevier, vol. 152(C), pages 9-21.
    10. Consoli, S. & Stagno, F. & Roccuzzo, G. & Cirelli, G.L. & Intrigliolo, F., 2014. "Sustainable management of limited water resources in a young orange orchard," Agricultural Water Management, Elsevier, vol. 132(C), pages 60-68.
    11. Serra, J. & Paredes, P. & Cordovil, CMdS & Cruz, S. & Hutchings, NJ & Cameira, MR, 2023. "Is irrigation water an overlooked source of nitrogen in agriculture?," Agricultural Water Management, Elsevier, vol. 278(C).
    12. Teixeira, Antônio & Leivas, Janice & Struiving, Tiago & Reis, João & Simão, Fúlvio, 2021. "Energy balance and irrigation performance assessments in lemon orchards by applying the SAFER algorithm to Landsat 8 images," Agricultural Water Management, Elsevier, vol. 247(C).
    13. Gasque, María & Martí, Pau & Granero, Beatriz & González-Altozano, Pablo, 2016. "Effects of long-term summer deficit irrigation on ‘Navelina’ citrus trees," Agricultural Water Management, Elsevier, vol. 169(C), pages 140-147.
    14. Pérez-Pérez, J.G. & Robles, J.M. & García-Sánchez, F. & Botía, P., 2016. "Comparison of deficit and saline irrigation strategies to confront water restriction in lemon trees grown in semi-arid regions," Agricultural Water Management, Elsevier, vol. 164(P1), pages 46-57.
    15. Li, Huanhuan & Liu, Hao & Gong, Xuewen & Li, Shuang & Pang, Jie & Chen, Zhifang & Sun, Jingsheng, 2021. "Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato," Agricultural Water Management, Elsevier, vol. 245(C).
    16. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Liao, Zhenqi & Zhang, Fucang & Wang, Yanli, 2021. "A global meta-analysis of yield and water use efficiency of crops, vegetables and fruits under full, deficit and alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    17. Knowling, Matthew J. & Walker, Rob R. & Pellegrino, Anne & Edwards, Everard J. & Westra, Seth & Collins, Cassandra & Ostendorf, Bertram & Bennett, Bree, 2023. "Generalized water production relations through process-based modeling: A viticulture example," Agricultural Water Management, Elsevier, vol. 280(C).
    18. Zhou, Huiping & Chen, Jinliang & Wang, Feng & Li, Xiaojuan & Génard, Michel & Kang, Shaozhong, 2020. "An integrated irrigation strategy for water-saving and quality-improving of cash crops: Theory and practice in China," Agricultural Water Management, Elsevier, vol. 241(C).
    19. Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Qiu, Rangjian & Chen, Renqiang & Gu, Feng, 2014. "Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition," Agricultural Water Management, Elsevier, vol. 146(C), pages 131-148.
    20. Shi, Rongchao & Tong, Ling & Ding, Risheng & Du, Taisheng & Shukla, Manoj Kumar, 2021. "Modeling kernel weight of hybrid maize seed production with different water regimes," Agricultural Water Management, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:287:y:2023:i:c:s0378377423003050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.