IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v251y2021ics0378377421001384.html
   My bibliography  Save this article

Water usage trends under intensive groundwater-irrigated agricultural development in a changing climate – Evidence from Bangladesh

Author

Listed:
  • Mojid, Mohammad A.
  • Mainuddin, Mohammed
  • Murad, Khandakar Faisal Ibn
  • Kirby, John Mac

Abstract

Comprehensive information on the past trend of local-level water usage of the cultivated crops is important for agricultural planning and forecasting water needs. This vital information is however deficient for the North-West (NW) region of Bangladesh. We estimated actual crop evapotranspiration (ET), total and crop-usable effective rainfalls (TER and ER, respectively) and irrigation requirement (IR) of 8 major crops and 8 cropping patterns over historical period (1985–2015) by using SWBcropwat model and trends of these water parameters by using MAKESENS tool for the 16 districts of the region. ET of the Rabi crops and cropping patterns revealed significant (p ≤ 0.05) decreasing trends in all districts, the average decrease being 13–31% in different districts. ER decreased significantly for most dry season crops in 4 districts. TER was often greater than ER for Kharif crops, which could not fully utilize TER always because of its non-uniform temporal distributions. IR showed significantly decreasing trend for the Rabi crops in 11 districts and increasing trend for the Kharif crops in 5 districts. Although ET and IR decreased in most cases, their total volumetric quantities showed significantly increasing trends due to expanded irrigated area in 16 districts over time; IR increased by 27–186% in different districts. Because of water scarcity and prospective economic benefit, farmers have been spontaneously adjusting crop selection – shifting from higher-water demanding crops to lower water-demanding crop-cultivation – during the last two decades. Our information would guide planning the agriculture of the NW region by selecting appropriate crops based on sustainable limit of groundwater resources. The employed methodology can evaluate crop suitability periodically for adjustment in any area.

Suggested Citation

  • Mojid, Mohammad A. & Mainuddin, Mohammed & Murad, Khandakar Faisal Ibn & Kirby, John Mac, 2021. "Water usage trends under intensive groundwater-irrigated agricultural development in a changing climate – Evidence from Bangladesh," Agricultural Water Management, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:agiwat:v:251:y:2021:i:c:s0378377421001384
    DOI: 10.1016/j.agwat.2021.106873
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421001384
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106873?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mainuddin, Mohammed & Maniruzzaman, Md. & Alam, Md. Mahbubul & Mojid, Mohammad A. & Schmidt, Erik J. & Islam, Md. Towfiqul & Scobie, Michael, 2020. "Water usage and productivity of Boro rice at the field level and their impacts on the sustainable groundwater irrigation in the North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 240(C).
    2. Wang Xiao-jun & Zhang Jian-yun & Shahid Shamsuddin & He Rui-min & Xia Xing-hui & Mou Xin-li, 2015. "Potential impact of climate change on future water demand in Yulin city, Northwest China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(1), pages 1-19, January.
    3. Schlenker, Wolfram & Hanemann, W Michael & Fisher, Anthony C, 2007. "Water Availability, Degree Days, and the Potential Impact of Climate Change on Irrigated Agriculture in California," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt8q8309qn, Department of Agricultural & Resource Economics, UC Berkeley.
    4. Chowdhury, Nasima Tanveer, 2010. "The relative efficiency of water use in Bangladesh agriculture," Quarterly Journal of International Agriculture, Humboldt-Universitaat zu Berlin, vol. 49(2), pages 1-18.
    5. Kirby, Mac & Ahmad, Mobin-ud-Din & Mainuddin, Mohammed & Khaliq, Tasneem & Cheema, M.J.M., 2017. "Agricultural production, water use and food availability in Pakistan: Historical trends, and projections to 2050," Agricultural Water Management, Elsevier, vol. 179(C), pages 34-46.
    6. Md. Kamruzzaman & A. T. M. Sakiur Rahman & Md. Shakil Ahmed & Md. Enamul Kabir & Quamrul Hasan Mazumder & M. Sayedur Rahman & Chowdhury Sarwar Jahan, 2018. "Spatio-temporal analysis of climatic variables in the western part of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 89-108, February.
    7. J. M. Kirby & M. Mainuddin & F. Mpelasoka & M. D. Ahmad & W. Palash & M.E. Quadir & S. M. Shah-Newaz & M. M. Hossain, 2016. "The impact of climate change on regional water balances in Bangladesh," Climatic Change, Springer, vol. 135(3), pages 481-491, April.
    8. De Silva, C.S. & Weatherhead, E.K. & Knox, J.W. & Rodriguez-Diaz, J.A., 2007. "Predicting the impacts of climate change--A case study of paddy irrigation water requirements in Sri Lanka," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 19-29, October.
    9. Mobin-ud-Din Ahmad & J. M. Kirby & M. J. M. Cheema, 2019. "Impact of agricultural development on evapotranspiration trends in the irrigated districts of Pakistan: evidence from 1981 to 2012," Water International, Taylor & Francis Journals, vol. 44(1), pages 51-73, January.
    10. Acharjee, Tapos Kumar & Halsema, Gerardo van & Ludwig, Fulco & Hellegers, Petra, 2017. "Declining trends of water requirements of dry season Boro rice in the north-west Bangladesh," Agricultural Water Management, Elsevier, vol. 180(PA), pages 148-159.
    11. Mobin-ud Ahmad & Mac Kirby & Mohammad Islam & Md. Hossain & Md. Islam, 2014. "Groundwater Use for Irrigation and its Productivity: Status and Opportunities for Crop Intensification for Food Security in Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1415-1429, March.
    12. Hong, Eun-Mi & Nam, Won-Ho & Choi, Jin-Yong & Pachepsky, Yakov A., 2016. "Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea," Agricultural Water Management, Elsevier, vol. 165(C), pages 163-180.
    13. Kirby, J.M. & Ahmad, M.D. & Mainuddin, M. & Palash, W. & Quadir, M.E. & Shah-Newaz, S.M. & Hossain, M.M., 2015. "The impact of irrigation development on regional groundwater resources in Bangladesh," Agricultural Water Management, Elsevier, vol. 159(C), pages 264-276.
    14. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    15. Acharjee, Tapos Kumar & Ludwig, Fulco & van Halsema, Gerardo & Hellegers, Petra & Supit, Iwan, 2017. "Future changes in water requirements of Boro rice in the face of climate change in North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 194(C), pages 172-183.
    16. Islam, A.R.M.Towfiqul & Shen, Shuang-He & Yang, Shen-Bin, 2018. "Predicting design water requirement of winter paddy under climate change condition using frequency analysis in Bangladesh," Agricultural Water Management, Elsevier, vol. 195(C), pages 58-70.
    17. Shamsuddin Shahid & Houshang Behrawan, 2008. "Drought risk assessment in the western part of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(3), pages 391-413, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liangfeng Zou & Yuanyuan Zha & Yuqing Diao & Chi Tang & Wenquan Gu & Dongguo Shao, 2023. "Coupling the Causal Inference and Informer Networks for Short-term Forecasting in Irrigation Water Usage," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 427-449, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, A.R.M.Towfiqul & Shen, Shuang-He & Yang, Shen-Bin, 2018. "Predicting design water requirement of winter paddy under climate change condition using frequency analysis in Bangladesh," Agricultural Water Management, Elsevier, vol. 195(C), pages 58-70.
    2. Acharjee, Tapos Kumar & Ludwig, Fulco & van Halsema, Gerardo & Hellegers, Petra & Supit, Iwan, 2017. "Future changes in water requirements of Boro rice in the face of climate change in North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 194(C), pages 172-183.
    3. Rowshon, M.K. & Dlamini, N.S. & Mojid, M.A. & Adib, M.N.M. & Amin, M.S.M. & Lai, S.H., 2019. "Modeling climate-smart decision support system (CSDSS) for analyzing water demand of a large-scale rice irrigation scheme," Agricultural Water Management, Elsevier, vol. 216(C), pages 138-152.
    4. Roquia Salam & Abu Reza Md. Towfiqul Islam & Shakibul Islam, 2020. "Spatiotemporal distribution and prediction of groundwater level linked to ENSO teleconnection indices in the northwestern region of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4509-4535, June.
    5. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Mahboob, M. Golam, 2023. "Simulation of water productivity of wheat in northwestern Bangladesh using multi-satellite data," Agricultural Water Management, Elsevier, vol. 281(C).
    6. Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
    7. Ahmad, Mirza Junaid & Iqbal, Muhammad Anjum & Choi, Kyung Sook, 2020. "Climate-driven constraints in sustaining future wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 231(C).
    8. Mondol, Md Anarul Haque & Zhu, Xuan & Dunkerley, David & Henley, Benjamin J., 2022. "Changing occurrence of crop water surplus or deficit and the impact of irrigation: An analysis highlighting consequences for rice production in Bangladesh," Agricultural Water Management, Elsevier, vol. 269(C).
    9. Na Li & Tangzhe Nie & Yi Tang & Dehao Lu & Tianyi Wang & Zhongxue Zhang & Peng Chen & Tiecheng Li & Linghui Meng & Yang Jiao & Kaiwen Cheng, 2022. "Responses of Soybean Water Supply and Requirement to Future Climate Conditions in Heilongjiang Province," Agriculture, MDPI, vol. 12(7), pages 1-21, July.
    10. Acharjee, Tapos Kumar & Halsema, Gerardo van & Ludwig, Fulco & Hellegers, Petra, 2017. "Declining trends of water requirements of dry season Boro rice in the north-west Bangladesh," Agricultural Water Management, Elsevier, vol. 180(PA), pages 148-159.
    11. Sucharita Pradhan & Anirban Dhar & Kamlesh Narayan Tiwari, 2022. "On Quantification of Groundwater Dynamics Under Long-term Land Use Land Cover Transition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4039-4055, September.
    12. Ahmad, Mobin-ud-Din & Peña-Arancibia, Jorge L. & Stewart, Joel P. & Kirby, John M., 2021. "Water balance trends in irrigated canal commands and its implications for sustainable water management in Pakistan: Evidence from 1981 to 2012," Agricultural Water Management, Elsevier, vol. 245(C).
    13. J. M. Kirby & M. Mainuddin & F. Mpelasoka & M. D. Ahmad & W. Palash & M.E. Quadir & S. M. Shah-Newaz & M. M. Hossain, 2016. "The impact of climate change on regional water balances in Bangladesh," Climatic Change, Springer, vol. 135(3), pages 481-491, April.
    14. Funk, Bryana & Amer, Saud A. & Ward, Frank A., 2023. "Sustainable aquifer management for food security," Agricultural Water Management, Elsevier, vol. 281(C).
    15. Liu, Yanqi & Lin, Yifan & Huo, Zailin & Zhang, Chenglong & Wang, Chaozi & Xue, Jingyuan & Huang, Guanhua, 2022. "Spatio-temporal variation of irrigation water requirements for wheat and maize in the Yellow River Basin, China, 1974–2017," Agricultural Water Management, Elsevier, vol. 262(C).
    16. Acharjee, Tapos Kumar & van Halsema, Gerardo & Ludwig, Fulco & Hellegers, Petra & Supit, Iwan, 2019. "Shifting planting date of Boro rice as a climate change adaptation strategy to reduce water use," Agricultural Systems, Elsevier, vol. 168(C), pages 131-143.
    17. Mainuddin, Mohammed & Maniruzzaman, Md. & Alam, Md. Mahbubul & Mojid, Mohammad A. & Schmidt, Erik J. & Islam, Md. Towfiqul & Scobie, Michael, 2020. "Water usage and productivity of Boro rice at the field level and their impacts on the sustainable groundwater irrigation in the North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 240(C).
    18. Tamiru Lemi & Fekadu Hailu, 2019. "Effects of Climate Change Variability on Agricultural Productivity," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 17(1), pages 14-20, February.
    19. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    20. Pelai, Ricardo & Hagerman, Shannon M. & Kozak, Robert, 2020. "Biotechnologies in agriculture and forestry: Governance insights from a comparative systematic review of barriers and recommendations," Forest Policy and Economics, Elsevier, vol. 117(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:251:y:2021:i:c:s0378377421001384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.