IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v247y2021ics0378377421000196.html
   My bibliography  Save this article

Identifying drought-tolerant genotypes of faba bean and their agro-physiological responses to different water regimes in an arid Mediterranean environment

Author

Listed:
  • Mansour, Elsayed
  • Desoky, El-Sayed M.
  • Ali, Mohamed M.A.
  • Abdul-Hamid, Mohamed I.
  • Ullah, Hayat
  • Attia, Ahmed
  • Datta, Avishek

Abstract

Faba bean (Vicia faba L.), a major legume crop, helps in maintaining soil health by fixing atmospheric nitrogen (N2) and thus mostly used as a rotational crop. However, faba bean is sensitive to water stress, which limits its yield potential in water-limited environments. The objectives of the present study were to (i) characterize the agro-physiological performance of 14 faba bean genotypes with different genetic backgrounds to various levels of water stress in an arid environment and (ii) identify the most drought-tolerant genotypes that maximize the marginal use of unit water without significant yield loss. Field experiments were conducted for two consecutive growing seasons in an arid Mediterranean climate, and several agronomic and physiological measurements of different faba bean genotypes in response to water stress were recorded. A great variation among the tested genotypes, according to several drought-response indices, was observed as a result of water stress on the basis of which they were classified into five groups (A–E) ranging from drought-tolerant to highly sensitive genotypes. Yield and water productivity results indicated that drought-tolerant genotypes produced more yield with less water compared with drought-sensitive genotypes and thus are highly recommended for faba bean production in water-limited environments. Certain physiological parameters, such as photosynthetic pigment, net photosynthetic rate, transpiration rate, leaf nutrient status (N, P and K content), relative water content and membrane stability index, exhibited highly positive association with seed yield and yield contributing traits. It is valid to use these parameters as rapid indicators of drought tolerance in breeding programs aiming to screen and improve faba bean genotypes for drought tolerance in arid environments.

Suggested Citation

  • Mansour, Elsayed & Desoky, El-Sayed M. & Ali, Mohamed M.A. & Abdul-Hamid, Mohamed I. & Ullah, Hayat & Attia, Ahmed & Datta, Avishek, 2021. "Identifying drought-tolerant genotypes of faba bean and their agro-physiological responses to different water regimes in an arid Mediterranean environment," Agricultural Water Management, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:agiwat:v:247:y:2021:i:c:s0378377421000196
    DOI: 10.1016/j.agwat.2021.106754
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421000196
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    2. Oweis, Theib & Hachum, Ahmed & Pala, Mustafa, 2005. "Faba bean productivity under rainfed and supplemental irrigation in northern Syria," Agricultural Water Management, Elsevier, vol. 73(1), pages 57-72, April.
    3. Mansour, Elsayed & Abdul-Hamid, Mohamed I & Yasin, Mohamed T & Qabil, Naglaa & Attia, Ahmed, 2017. "Identifying drought-tolerant genotypes of barley and their responses to various irrigation levels in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 194(C), pages 58-67.
    4. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    5. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    6. Dong, Baodi & Shi, Lei & Shi, Changhai & Qiao, Yunzhou & Liu, Mengyu & Zhang, Zhengbin, 2011. "Grain yield and water use efficiency of two types of winter wheat cultivars under different water regimes," Agricultural Water Management, Elsevier, vol. 99(1), pages 103-110.
    7. Kijne, Jacob W. & Barker, Randolph & Molden, David J. (ed.), 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, International Water Management Institute, number 138054.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huiqi Zhang, 2023. "Effects of Soybean–Corn Rotation on Crop Yield, Economic Benefits, and Water Productivity in the Corn Belt of Northeast China," Sustainability, MDPI, vol. 15(14), pages 1-15, July.
    2. Song, Zengzhen & Peng, Yuxing & Li, Zizhong & Zhang, Shuai & Liu, Xiaotong & Tan, Senwen, 2022. "Two irrigation events can achieve relatively high, stable corn yield and water productivity in aeolian sandy soil of northeast China," Agricultural Water Management, Elsevier, vol. 260(C).
    3. Mohamed A. Sharaf-Eldin & Khalid S. Alshallash & Khadiga R. Alharbi & Mesfer M. Alqahtani & Abdelwahab A. Etman & Ali M. Yassin & Enas S. Azab & Samira A. F. El-Okkiah, 2022. "Influence of Seed Soaking and Foliar Application Using Ozonated Water on Two Sweet Pepper Hybrids under Cold Stress," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    4. Mansour, Elsayed & Moustafa, Ehab S.A. & Abdul-Hamid, Mohamed I.E. & Ash-shormillesy, Salwa M.A.I. & Merwad, Abdel-Rahman M.A. & Wafa, Hany A. & Igartua, Ernesto, 2021. "Field responses of barley genotypes across a salinity gradient in an arid Mediterranean environment," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Abbasi, Nima & Sohrabi, Yousef & Kiani, Hawre, 2023. "Using tragacanth gum mitigated the effects of drought stress on the black cumin (Nigella sativa) plant," Agricultural Water Management, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Junsheng & Geng, Chenming & Cui, Xiaolu & Li, Mengyue & Chen, Shuaihong & Hu, Tiantian, 2021. "Response of drip fertigated wheat-maize rotation system on grain yield, water productivity and economic benefits using different water and nitrogen amounts," Agricultural Water Management, Elsevier, vol. 258(C).
    2. Wang, Xiangping & Yang, Jingsong & Liu, Guangming & Yao, Rongjiang & Yu, Shipeng, 2015. "Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution," Agricultural Water Management, Elsevier, vol. 149(C), pages 44-54.
    3. Uygan, Demet & Cetin, Oner & Alveroglu, Volkan & Sofuoglu, Aytug, 2021. "Improvement of water saving and economic productivity based on quotation with sugar content of sugar beet using linear move sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 255(C).
    4. Nektarios N. Kourgialas & Georgios Psarras & Giasemi Morianou & Vassilios Pisinaras & Georgios Koubouris & Nektaria Digalaki & Stella Malliaraki & Katerina Aggelaki & Georgios Motakis & George Arampat, 2022. "Good Agricultural Practices Related to Water and Soil as a Means of Adaptation of Mediterranean Olive Growing to Extreme Climate-Water Conditions," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    5. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    6. Vita Serman, Facundo & Orgaz, Francisco & Starobinsky, Gabriela & Capraro, Flavio & Fereres, Elias, 2021. "Water productivity and net profit of high-density olive orchards in San Juan, Argentina," Agricultural Water Management, Elsevier, vol. 252(C).
    7. Amarasinghe, Upali A. & Sikka, Alok & Mandave, Vidya & Panda, R. K. & Gorantiwar, S. & Ambast, S. K., 2021. "Improving economic water productivity to enhance resilience in canal irrigation systems: a pilot study of the Sina Irrigation System in Maharashtra, India," Papers published in Journals (Open Access), International Water Management Institute, pages 23(2):447-4.
    8. Karrou, M. & Oweis, T., 2012. "Water and land productivities of wheat and food legumes with deficit supplemental irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 107(C), pages 94-103.
    9. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    10. Li, Zhou & Zhang, Qingping & Wei, Wanrong & Cui, Song & Tang, Wei & Li, Yuan, 2020. "Determining effects of water and nitrogen inputs on wheat yield and water productivity and nitrogen use efficiency in China: A quantitative synthesis," Agricultural Water Management, Elsevier, vol. 242(C).
    11. Ali Reza Seifzadeh & Mohammad Reza Khaledian & Mohsen Zavareh & Parisha Shahinrokhsar & Christos A. Damalas, 2020. "European Borage ( Borago officinalis L.) Yield and Profitability under Different Irrigation Systems," Agriculture, MDPI, vol. 10(4), pages 1-13, April.
    12. Oweis, Theib & Hachum, Ahmed, 2006. "Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 57-73, February.
    13. Monaco, Federica & Sali, Guido, 2018. "How water amounts and management options drive Irrigation Water Productivity of rice. A multivariate analysis based on field experiment data," Agricultural Water Management, Elsevier, vol. 195(C), pages 47-57.
    14. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    15. Yildirim, Demet & Cemek, Bilal & Unlukara, Ali, 2022. "The effect of mulched ridge and furrow micro catchment water harvesting on red pepper yield and quality features in Bafra Plain of Northern Turkey," Agricultural Water Management, Elsevier, vol. 262(C).
    16. Çetin, Oner & Kara, Abdurrahman, 2019. "Assesment of water productivity using different drip irrigation systems for cotton," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    17. Yang, Shanshan & Zhang, Jiahua & Wang, Jingwen & Zhang, Sha & Bai, Yun & Shi, Siqi & Cao, Dan, 2022. "Spatiotemporal variations of water productivity for cropland and driving factors over China during 2001–2015," Agricultural Water Management, Elsevier, vol. 262(C).
    18. Singh, Anil Kumar & Singh, K.M. & Bhatt, B.P., 2014. "Efficient water management: way forward to climate smart grain legumes production," MPRA Paper 59316, University Library of Munich, Germany, revised 23 Sep 2014.
    19. Laureti, Tiziana & Benedetti, Ilaria & Branca, Giacomo, 2021. "Water use efficiency and public goods conservation: A spatial stochastic frontier model applied to irrigation in Southern Italy," Socio-Economic Planning Sciences, Elsevier, vol. 73(C).
    20. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:247:y:2021:i:c:s0378377421000196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.