IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v243y2021ics037837741931741x.html
   My bibliography  Save this article

Greenhouse gas emissions and net global warming potential of vineyards under different fertilizer and water managements in North China

Author

Listed:
  • Zhang, Jie
  • Guo, Yanjie
  • Han, Jian
  • Ji, Yanzhi
  • Zhang, Lijuan

Abstract

Ensuring fruit productivity and mitigation climate change under low consumption of fertilizer and irrigation can contribute to sustainable agriculture. The objective of this study was to determine whether higher fruit production and lower net global warming potential (Net-GWP) could be realized concomitantly by reducing the amount of fertilizer and water applied. The effect of water and fertilizer management on fruit yield, N2O and CH4 emissions variation was measured over a two-year period to gain insight into Net-GWP and greenhouse gas intensity (GHGI) in wine grape vineyard (WGV) and table grape vineyard (TGV) in North China. Two fertilizer and water managements were set in each vineyard: optimized practice (OP) treatment and traditional practice (TP) treatment. The results showed that the OP treatment significantly (P < 0.05) increased grape fruit by 10.2 % and 10.7 % in WGV and TGV, respectively, in comparison with TP treatment. Besides, the fluxes N2O and CH4 showed significant seasonal variation and the maximum were occurred from April to September and the N2O emissions were strongly decreased in OP treatment. Compared with the TP treatment, the OP treatment significantly (P < 0.05) decreased the Net-GWP and GHGI by 13.2 % and 21.5 % in WGV, as well as decreased that by 21 % and 28.6 % in TGV. The process of manufacture and transport of N fertilizer, the N2O emission and the electricity generation for pumping irrigation were the three main contributors to vineyard Net-GWP. Thus we concluded that higher fruit production and lower Net-GWP could be realized concomitantly by reducing fertilizer and water application in WGV and TGV in North China.

Suggested Citation

  • Zhang, Jie & Guo, Yanjie & Han, Jian & Ji, Yanzhi & Zhang, Lijuan, 2021. "Greenhouse gas emissions and net global warming potential of vineyards under different fertilizer and water managements in North China," Agricultural Water Management, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s037837741931741x
    DOI: 10.1016/j.agwat.2020.106521
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741931741X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yusheng Hou & Zhenhua Wang & Huaijun Ding & Wenhao Li & Yue Wen & Jifeng Zhang & Yunqing Dou, 2019. "Evaluation of Suitable Amount of Water and Fertilizer for Mature Grapes in Drip Irrigation in Extreme Arid Regions," Sustainability, MDPI, vol. 11(7), pages 1-23, April.
    2. Uwe A. Schneider & Pete Smith, 2008. "Greenhouse Gas Emission Mitigation and Emission Intensities in Agriculture," Working Papers FNU-164, Research unit Sustainability and Global Change, Hamburg University, revised Jul 2008.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Yu & Zhang, Zhongxue & Li, Tiecheng & Chen, Peng & Nie, Tangzhe & Zhang, Zuohe & Du, Sicheng, 2023. "Straw return alleviates the greenhouse effect of paddy fields by increasing soil organic carbon sequestration under water-saving irrigation," Agricultural Water Management, Elsevier, vol. 287(C).
    2. Zhang, Binbin & Yan, Sihui & Li, Bin & Wu, Shufang & Feng, Hao & Gao, Xiaodong & Song, Xiaolin & Siddique, Kadambot H.M., 2023. "Combining organic and chemical fertilizer plus water-saving system reduces environmental impacts and improves apple yield in rainfed apple orchards," Agricultural Water Management, Elsevier, vol. 288(C).
    3. Guo, Yanjie & Ji, Yanzhi & Zhang, Jie & Liu, Qiao & Han, Jian & Zhang, Lijuan, 2022. "Effects of water and nitrogen management on N2O emissions and NH3 volatilization from a vineyard in North China," Agricultural Water Management, Elsevier, vol. 266(C).
    4. Wang, Chong & Gao, Zhenzhen & Zhao, Jiongchao & Feng, Yupeng & Laraib, Iqra & Shang, Mengfei & Wang, Kaicheng & Chen, Fu & Chu, Qingquan, 2022. "Irrigation-induced hydrothermal variation affects greenhouse gas emissions and crop production," Agricultural Water Management, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hari Wahyu Wijayanto & Kai-An Lo & Hery Toiba & Moh Shadiqur Rahman, 2022. "Does Agroforestry Adoption Affect Subjective Well-Being? Empirical Evidence from Smallholder Farmers in East Java, Indonesia," Sustainability, MDPI, vol. 14(16), pages 1-10, August.
    2. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    3. Huarui Gong & Jing Li & Zhen Liu & Yitao Zhang & Ruixing Hou & Zhu Ouyang, 2022. "Mitigated Greenhouse Gas Emissions in Cropping Systems by Organic Fertilizer and Tillage Management," Land, MDPI, vol. 11(7), pages 1-18, July.
    4. Oliver Lazarus & Sonali McDermid & Jennifer Jacquet, 2021. "The climate responsibilities of industrial meat and dairy producers," Climatic Change, Springer, vol. 165(1), pages 1-21, March.
    5. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    6. Soy-Massoni, Emma & Langemeyer, Johannes & Varga, Diego & Sáez, Marc & Pintó, Josep, 2016. "The importance of ecosystem services in coastal agricultural landscapes: Case study from the Costa Brava, Catalonia," Ecosystem Services, Elsevier, vol. 17(C), pages 43-52.
    7. Telmo José Mendes & Diego Silva Siqueira & Eduardo Barretto Figueiredo & Ricardo de Oliveira Bordonal & Mara Regina Moitinho & José Marques Júnior & Newton La Scala Jr., 2021. "Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16410-16427, November.
    8. Ancuta Isbasoiu & Pierre-Alain Jayet & Stéphane De Cara, 2021. "Increasing food production and mitigating agricultural greenhouse gas emissions in the European Union: impacts of carbon pricing and calorie production targeting," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(2), pages 409-440, April.
    9. Amanda Silva‐Parra & Juan Manuel Trujillo‐González & Eric C. Brevik, 2021. "Greenhouse gas balance and mitigation potential of agricultural systems in Colombia: A systematic analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 554-572, June.
    10. Shihong Yang & Zewei Jiang & Xiao Sun & Jie Ding & Junzeng Xu, 2018. "Effects of Biochar Amendment on CO 2 Emissions from Paddy Fields under Water-Saving Irrigation," IJERPH, MDPI, vol. 15(11), pages 1-12, November.
    11. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2018. "Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 748-761.
    12. Karner, Katrin & Schmid, Erwin & Schneider, Uwe A. & Mitter, Hermine, 2021. "Computing stochastic Pareto frontiers between economic and environmental goals for a semi-arid agricultural production region in Austria," Ecological Economics, Elsevier, vol. 185(C).
    13. Wang, Guangshuai & Liang, Yueping & Zhang, Qian & Jha, Shiva K. & Gao, Yang & Shen, Xiaojun & Sun, Jingsheng & Duan, Aiwang, 2016. "Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 163(C), pages 403-407.
    14. Saw Min & Martin Rulík, 2020. "Comparison of Carbon Dioxide (CO 2 ) Fluxes between Conventional and Conserved Irrigated Rice Paddy Fields in Myanmar," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    15. Tang, Kai & Hailu, Atakelty & Kragt, Marit E. & Ma, Chunbo, 2018. "The response of broadacre mixed crop-livestock farmers to agricultural greenhouse gas abatement incentives," Agricultural Systems, Elsevier, vol. 160(C), pages 11-20.
    16. Connor, Melanie & de Guia, Annalyn H. & Quilloy, Reianne & Van Nguyen, Hung & Gummert, Martin & Sander, Bjoern Ole, 2020. "When climate change is not psychologically distant – Factors influencing the acceptance of sustainable farming practices in the Mekong river Delta of Vietnam," World Development Perspectives, Elsevier, vol. 18(C).
    17. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    18. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.
    19. Kerstin Jantke & Martina J. Hartmann & Livia Rasche & Benjamin Blanz & Uwe A. Schneider, 2020. "Agricultural Greenhouse Gas Emissions: Knowledge and Positions of German Farmers," Land, MDPI, vol. 9(5), pages 1-13, April.
    20. Song, Guobao & Song, Jie & Zhang, Shushen, 2016. "Modelling the policies of optimal straw use for maximum mitigation of climate change in China from a system perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 789-810.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s037837741931741x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.