IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v179y2017icp378-389.html
   My bibliography  Save this article

A flexible decision support system for irrigation scheduling in an irrigation district in China

Author

Listed:
  • Yang, Gaiqiang
  • Liu, Lei
  • Guo, Ping
  • Li, Mo

Abstract

Decision support systems for agricultural irrigation scheduling are generally designed and developed for specific agricultural regions or irrigation districts. Flexible irrigation scheduling decision support tools which are applicable to various irrigation districts are desired for sound agricultural irrigation planning and management. This study attempts to develop a flexible irrigation scheduling decision support system (FIS-DSS) which could be easily customized and adapted to different irrigation districts and cases, and thus repeated software development is not needed. The developed FIS-DSS includes a user interface, a knowledge base, and an inference engine. As the core module of the FIS-DSS, the inference engine uses specific computer programs to maneuver the knowledge base, and the knowledge base was used to store and provide data, knowledge, information and rules for the inference engine. As the core of the FIS-DSS, a fuzzy interval programming model with multiple objectives and constrains was developed with advantages in data processing, model flexibility, alternative solving algorithm and friendly result display. The system users can obtain suitable water allocation schemes for each crop on a temporal and spatial fashion by modifying the model inputs and scenarios through the software interface. A case study was introduced to demonstrate the functions and operations of the FIS-DSS, and useful information has been generated to provide a practical guidance for agricultural water allocation and utilization.

Suggested Citation

  • Yang, Gaiqiang & Liu, Lei & Guo, Ping & Li, Mo, 2017. "A flexible decision support system for irrigation scheduling in an irrigation district in China," Agricultural Water Management, Elsevier, vol. 179(C), pages 378-389.
  • Handle: RePEc:eee:agiwat:v:179:y:2017:i:c:p:378-389
    DOI: 10.1016/j.agwat.2016.07.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416302657
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.07.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Juite & Hwang, W.-L., 2007. "A fuzzy set approach for R&D portfolio selection using a real options valuation model," Omega, Elsevier, vol. 35(3), pages 247-257, June.
    2. Yang, Gaiqiang & Guo, Ping & Huo, Lijuan & Ren, Chongfeng, 2015. "Optimization of the irrigation water resources for Shijin irrigation district in north China," Agricultural Water Management, Elsevier, vol. 158(C), pages 82-98.
    3. Leenhardt, D. & Trouvat, J. -L. & Gonzales, G. & Perarnaud, V. & Prats, S. & Bergez, J. -E., 2004. "Estimating irrigation demand for water management on a regional scale: II. Validation of ADEAUMIS," Agricultural Water Management, Elsevier, vol. 68(3), pages 233-250, August.
    4. Pedras, C.M.G. & Pereira, L.S. & Gonalves, J.M., 2009. "MIRRIG: A decision support system for design and evaluation of microirrigation systems," Agricultural Water Management, Elsevier, vol. 96(4), pages 691-701, April.
    5. Tanure, Soraya & Nabinger, Carlos & Becker, João Luiz, 2013. "Bioeconomic model of decision support system for farm management. Part I: Systemic conceptual modeling," Agricultural Systems, Elsevier, vol. 115(C), pages 104-116.
    6. M. Li & P. Guo & G. Yang & S. Fang, 2014. "IB-ICCMSP: An Integrated Irrigation Water Optimal Allocation and Planning Model Based on Inventory Theory under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 241-260, January.
    7. Qin, X.S. & Huang, G.H. & Zeng, G.M. & Chakma, A. & Huang, Y.F., 2007. "An interval-parameter fuzzy nonlinear optimization model for stream water quality management under uncertainty," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1331-1357, August.
    8. Lu, H.W. & Huang, G.H. & Zhang, Y.M. & He, L., 2012. "Strategic agricultural land-use planning in response to water-supplier variation in a China’s rural region," Agricultural Systems, Elsevier, vol. 108(C), pages 19-28.
    9. Pedras, C.M.G. & Pereira, L.S., 2009. "Multicriteria analysis for design of microirrigation systems. Application and sensitivity analysis," Agricultural Water Management, Elsevier, vol. 96(4), pages 702-710, April.
    10. Leenhardt, D. & Trouvat, J. -L. & Gonzales, G. & Perarnaud, V. & Prats, S. & Bergez, J. -E., 2004. "Estimating irrigation demand for water management on a regional scale: I. ADEAUMIS, a simulation platform based on bio-decisional modelling and spatial information," Agricultural Water Management, Elsevier, vol. 68(3), pages 207-232, August.
    11. Galelli, S. & Gandolfi, C. & Soncini-Sessa, R. & Agostani, D., 2010. "Building a metamodel of an irrigation district distributed-parameter model," Agricultural Water Management, Elsevier, vol. 97(2), pages 187-200, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. González Perea, R. & Camacho Poyato, E. & Montesinos, P. & Rodríguez Díaz, J.A., 2018. "Prediction of applied irrigation depths at farm level using artificial intelligence techniques," Agricultural Water Management, Elsevier, vol. 206(C), pages 229-240.
    2. Carlos F. Brunner-Parra & Luis A. Croquevielle-Rendic & Carlos A. Monardes-Concha & Bryan A. Urra-Calfuñir & Elbio L. Avanzini & Tomás Correa-Vial, 2022. "Web-Based Integer Programming Decision Support System for Walnut Processing Planning: The MeliFen Case," Agriculture, MDPI, vol. 12(3), pages 1-22, March.
    3. Gaiqiang Yang & Mo Li & Lijuan Huo, 2019. "Decision Support System Based on Queuing Theory to Optimize Canal Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4367-4384, September.
    4. Li, Hongjun & Li, Jiazhen & Shen, Yanjun & Zhang, Xiying & Lei, Yuping, 2018. "Web-based irrigation decision support system with limited inputs for farmers," Agricultural Water Management, Elsevier, vol. 210(C), pages 279-285.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Gaiqiang & Guo, Ping & Huo, Lijuan & Ren, Chongfeng, 2015. "Optimization of the irrigation water resources for Shijin irrigation district in north China," Agricultural Water Management, Elsevier, vol. 158(C), pages 82-98.
    2. Li, Hongjun & Li, Jiazhen & Shen, Yanjun & Zhang, Xiying & Lei, Yuping, 2018. "Web-based irrigation decision support system with limited inputs for farmers," Agricultural Water Management, Elsevier, vol. 210(C), pages 279-285.
    3. Biarnès, A. & Bailly, J.S. & Boissieux, Y., 2009. "Identifying indicators of the spatial variation of agricultural practices by a tree partitioning method: The case of weed control practices in a vine growing catchment," Agricultural Systems, Elsevier, vol. 99(2-3), pages 105-116, February.
    4. Gaiqiang Yang & Ping Guo & Mo Li & Shiqi Fang & Liudong Zhang, 2016. "An Improved Solving Approach for Interval-Parameter Programming and Application to an Optimal Allocation of Irrigation Water Problem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 701-729, January.
    5. Gaiqiang Yang & Ping Guo & Mo Li & Shiqi Fang & Liudong Zhang, 2016. "An Improved Solving Approach for Interval-Parameter Programming and Application to an Optimal Allocation of Irrigation Water Problem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 701-729, January.
    6. Lucie Clavel & Marie-Hélène Charron & Olivier Therond & Delphine Leenhardt, 2012. "A Modelling Solution for Developing and Evaluating Agricultural Land-Use Scenarios in Water Scarcity Contexts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2625-2641, July.
    7. Wong, Bo K. & Lai, Vincent S., 2011. "A survey of the application of fuzzy set theory in production and operations management: 1998-2009," International Journal of Production Economics, Elsevier, vol. 129(1), pages 157-168, January.
    8. Maton, L. & Leenhardt, D. & Goulard, M. & Bergez, J.-E., 2005. "Assessing the irrigation strategies over a wide geographical area from structural data about farming systems," Agricultural Systems, Elsevier, vol. 86(3), pages 293-311, December.
    9. Wang, S. & Huang, G.H., 2014. "An integrated approach for water resources decision making under interactive and compound uncertainties," Omega, Elsevier, vol. 44(C), pages 32-40.
    10. Leen, Frederik & Van den Broeke, Alice & Aluwé, Marijke & Ludwig, Lauwers & Sam, Millet & Jef, Van Meensel, 2017. "Simulation Modelling To Provide Insights Into The Optimization Of Delivery Weights Of Finisher Pigs," 2017 International Congress, August 28-September 1, 2017, Parma, Italy 261272, European Association of Agricultural Economists.
    11. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    12. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    13. Min Zhou & Shasha Lu & Shukui Tan & Danping Yan & Guoliang Ou & Dianfeng Liu & Xiang Luo & Yanan Li & Lu Zhang & Zuo Zhang & Xiangbo Zhu, 2017. "A stochastic equilibrium chance-constrained programming model for municipal solid waste management of the City of Dalian, China," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(1), pages 199-218, January.
    14. Soraya Tanure & Carlos Nabinger & João Luiz Becker, 2015. "Bioeconomic Model of Decision Support System for Farm Management: Proposal of a Mathematical Model," Systems Research and Behavioral Science, Wiley Blackwell, vol. 32(6), pages 658-671, November.
    15. Leenhardt, D. & Trouvat, J. -L. & Gonzales, G. & Perarnaud, V. & Prats, S. & Bergez, J. -E., 2004. "Estimating irrigation demand for water management on a regional scale: II. Validation of ADEAUMIS," Agricultural Water Management, Elsevier, vol. 68(3), pages 233-250, August.
    16. T H Moon & Y Kim & S Y Sohn, 2011. "Technology credit rating system for funding SMEs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 608-615, April.
    17. M Tavana & M A Sodenkamp, 2010. "A fuzzy multi-criteria decision analysis model for advanced technology assessment at Kennedy Space Center," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(10), pages 1459-1470, October.
    18. F. Perez & T. Gomez, 2016. "Multiobjective project portfolio selection with fuzzy constraints," Annals of Operations Research, Springer, vol. 245(1), pages 7-29, October.
    19. Govindan, Kannan & Jepsen, Martin Brandt, 2016. "ELECTRE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 250(1), pages 1-29.
    20. Barbati, Maria & Greco, Salvatore & Kadziński, Miłosz & Słowiński, Roman, 2018. "Optimization of multiple satisfaction levels in portfolio decision analysis," Omega, Elsevier, vol. 78(C), pages 192-204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:179:y:2017:i:c:p:378-389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.