IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v121y2013icp135-148.html
   My bibliography  Save this article

Modeling water balance and effects of different subsurface drainage methods on water outflow components in a clayey agricultural field in boreal conditions

Author

Listed:
  • Turunen, M.
  • Warsta, L.
  • Paasonen-Kivekäs, M.
  • Nurminen, J.
  • Myllys, M.
  • Alakukku, L.
  • Äijö, H.
  • Puustinen, M.
  • Koivusalo, H.

Abstract

Proper drainage practices to remove excess water are crucial for crop cultivation in the humid climatic conditions of the boreal areas. The objectives of this study were to close the water balance, to quantify the amount of groundwater outflow, to identify the effects of topography on drain discharge, and to determine the effects of different subsurface drain installation methods and spacing of drainage lines on water outflow components in a clayey agricultural field. Hydro-meteorological, soil and topographic data were available from paired field sections in southern Finland including two control sections and two sections where different subsurface drainage methods were applied. A 3D hydrological model (FLUSH) was applied to the whole field area for snow- and frost-free periods in three measurement years to decipher the hydrological effects of the drainage improvements. The simulated field area was 14ha. Simulation results revealed that a steep slope outside of the field decreased drain discharge with 40% and increased groundwater outflow, which was quantified to be a major component of the water balance, approximately 9–15% of the precipitation. The model simulations demonstrated and quantified how drainage improvements in a treatment section affected the hydrology of an adjacent control section. This revealed that the sections shared a hydrological connection through subsurface flow processes. Such connection is typically neglected in the experimental comparison of measurement results from paired field sections. According to the simulations trenchless drain installation changed soil hydraulic properties by decreasing the volumetric fraction of connected soil macropores and by increasing the rate of water exchange between soil matrix and macropores. This affected more the dynamics than the absolute amount of drain discharge. The 3D model was useful in closing the water balance although the limitations were lack of data outside monitored sections and exclusion of snow and frost processes.

Suggested Citation

  • Turunen, M. & Warsta, L. & Paasonen-Kivekäs, M. & Nurminen, J. & Myllys, M. & Alakukku, L. & Äijö, H. & Puustinen, M. & Koivusalo, H., 2013. "Modeling water balance and effects of different subsurface drainage methods on water outflow components in a clayey agricultural field in boreal conditions," Agricultural Water Management, Elsevier, vol. 121(C), pages 135-148.
  • Handle: RePEc:eee:agiwat:v:121:y:2013:i:c:p:135-148
    DOI: 10.1016/j.agwat.2013.01.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377413000334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2013.01.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Larsson, Martin H. & Persson, Kristian & Ulén, Barbro & Lindsjö, Anders & Jarvis, Nicholas J., 2007. "A dual porosity model to quantify phosphorus losses from macroporous soils," Ecological Modelling, Elsevier, vol. 205(1), pages 123-134.
    2. Singh, R. & Helmers, M.J. & Qi, Zhiming, 2006. "Calibration and validation of DRAINMOD to design subsurface drainage systems for Iowa's tile landscapes," Agricultural Water Management, Elsevier, vol. 85(3), pages 221-232, October.
    3. Konukcu, F. & Gowing, J.W. & Rose, D.A., 2006. "Dry drainage: A sustainable solution to waterlogging and salinity problems in irrigation areas?," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 1-12, May.
    4. Wang, X. & Mosley, C.T. & Frankenberger, J.R. & Kladivko, E.J., 2006. "Subsurface drain flow and crop yield predictions for different drain spacings using DRAINMOD," Agricultural Water Management, Elsevier, vol. 79(2), pages 113-136, January.
    5. Turtola, E. & Paajanen, A., 1995. "Influence of improved subsurface drainage on phosphorus losses and nitrogen leaching from a heavy clay soil," Agricultural Water Management, Elsevier, vol. 28(4), pages 295-310, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Turunen, M. & Warsta, L. & Paasonen-Kivekäs, M. & Nurminen, J. & Alakukku, L. & Myllys, M. & Koivusalo, H., 2015. "Effects of terrain slope on long-term and seasonal water balances in clayey, subsurface drained agricultural fields in high latitude conditions," Agricultural Water Management, Elsevier, vol. 150(C), pages 139-151.
    2. Häggblom, Olle & Salo, Heidi & Turunen, Mika & Nurminen, Jyrki & Alakukku, Laura & Myllys, Merja & Koivusalo, Harri, 2019. "Impacts of supplementary drainage on the water balance of a poorly drained agricultural field," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Negm, L.M. & Youssef, M.A. & Skaggs, R.W. & Chescheir, G.M. & Jones, J., 2014. "DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land," Agricultural Water Management, Elsevier, vol. 137(C), pages 30-45.
    2. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    3. Turunen, M. & Warsta, L. & Paasonen-Kivekäs, M. & Nurminen, J. & Alakukku, L. & Myllys, M. & Koivusalo, H., 2015. "Effects of terrain slope on long-term and seasonal water balances in clayey, subsurface drained agricultural fields in high latitude conditions," Agricultural Water Management, Elsevier, vol. 150(C), pages 139-151.
    4. Ghane, Ehsan & Askar, Manal H., 2021. "Predicting the effect of drain depth on profitability and hydrology of subsurface drainage systems across the eastern USA," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Askar, Manal H & Youssef, Mohamed A & Chescheir, George M & Negm, Lamyaa M & King, Kevin W & Hesterberg, Dean L & Amoozegar, Aziz & Skaggs, R. Wayne, 2020. "DRAINMOD Simulation of macropore flow at subsurface drained agricultural fields: Model modification and field testing," Agricultural Water Management, Elsevier, vol. 242(C).
    6. Gunn, Kpoti M. & Baule, William J. & Frankenberger, Jane R. & Gamble, Debra L. & Allred, Barry J. & Andresen, Jeff A. & Brown, Larry C., 2018. "Modeled climate change impacts on subirrigated maize relative yield in northwest Ohio," Agricultural Water Management, Elsevier, vol. 206(C), pages 56-66.
    7. Malakshahi, Amir- Ashkan & Darzi- Naftchali, Abdullah & Mohseni, Behrooz, 2020. "Analyzing water table depth fluctuation response to evapotranspiration involving DRAINMOD model," Agricultural Water Management, Elsevier, vol. 234(C).
    8. Kwon, Ho-Young & Grunwald, Sabine & Beck, Howard W. & Jung, Yunchul & Daroub, Samira H. & Lang, Timothy A. & Morgan, Kelly T., 2010. "Ontology-based simulation of water flow in organic soils applied to Florida sugarcane," Agricultural Water Management, Elsevier, vol. 97(1), pages 112-122, January.
    9. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Salazar, Osvaldo & Wesström, Ingrid & Youssef, Mohamed A. & Skaggs, R. Wayne & Joel, Abraham, 2009. "Evaluation of the DRAINMOD-N II model for predicting nitrogen losses in a loamy sand under cultivation in south-east Sweden," Agricultural Water Management, Elsevier, vol. 96(2), pages 267-281, February.
    11. Knisel, Walter G. & Turtola, Eila, 2000. "Gleams model application on a heavy clay soil in Finland," Agricultural Water Management, Elsevier, vol. 43(3), pages 285-309, April.
    12. Matinzadeh, Mohammad Mehdi & Abedi Koupai, Jahangir & Sadeghi-Lari, Adnan & Nozari, Hamed & Shayannejad, Mohammad, 2017. "Development of an innovative integrated model for the simulation of nitrogen dynamics in farmlands with drainage systems using the system dynamics approach," Ecological Modelling, Elsevier, vol. 347(C), pages 11-28.
    13. Sidemo-Holm, William & Smith, Henrik G. & Brady, Mark V., 2018. "Improving agricultural pollution abatement through result-based payment schemes," Land Use Policy, Elsevier, vol. 77(C), pages 209-219.
    14. Feng Tian & Haibin Shi & Qingfeng Miao & Ruiping Li & Jie Duan & Xu Dou & Weiying Feng, 2023. "Soil Water and Salt Transport in Severe Saline–Alkali Soil after Ditching under Subsurface Pipe Drainage Conditions," Agriculture, MDPI, vol. 13(12), pages 1-20, November.
    15. Romeu Gerardo & Isabel P. de Lima, 2022. "Sentinel-2 Satellite Imagery-Based Assessment of Soil Salinity in Irrigated Rice Fields in Portugal," Agriculture, MDPI, vol. 12(9), pages 1-20, September.
    16. Thomas Spencer & Tihomir Ancev & Jeff Connor, 2009. "Improving Cost Effectiveness of Irrigation Zoning for Salinity Mitigation by Introducing Offsets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 2085-2100, August.
    17. Vandersypen, K. & Keita, A.C.T. & Coulibaly, B. & Raes, D. & Jamin, J.-Y., 2007. "Drainage problems in the rice schemes of the Office du Niger (Mali) in relation to water management," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 153-160, April.
    18. Marlet, Serge & Bouksila, Fethi & Bahri, Akissa, 2009. "Water and salt balance at irrigation scheme scale: A comprehensive approach for salinity assessment in a Saharan oasis," Agricultural Water Management, Elsevier, vol. 96(9), pages 1311-1322, September.
    19. Qian, Yingzhi & Zhu, Yan & Ye, Ming & Huang, Jiesheng & Wu, Jingwei, 2021. "Experiment and numerical simulation for designing layout parameters of subsurface drainage pipes in arid agricultural areas," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Ajay Singh & Sudhindra Panda, 2013. "Optimization and Simulation Modelling for Managing the Problems of Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3421-3431, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:121:y:2013:i:c:p:135-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.