IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v206y2018icp56-66.html
   My bibliography  Save this article

Modeled climate change impacts on subirrigated maize relative yield in northwest Ohio

Author

Listed:
  • Gunn, Kpoti M.
  • Baule, William J.
  • Frankenberger, Jane R.
  • Gamble, Debra L.
  • Allred, Barry J.
  • Andresen, Jeff A.
  • Brown, Larry C.

Abstract

Subirrigation is employed to supply water to crop root zones via subsurface drainage systems, which are typically installed for the purpose of excess soil water removal. Crop yield increases due to subirrigation have been demonstrated in numerous studies, but there is limited information regarding yield under future climate conditions when growing season conditions are expected to be drier in the U.S. Corn Belt. DRAINMOD was calibrated and validated for three locations with different soil series in northwest Ohio and used to investigate maize relative yield differences between subirrigation and free subsurface drainage for historic (1984–2013) and future (2041–2070) climate conditions. For historic conditions, the mean maize relative yield increased by 27% with subirrigation on the Nappanee loam soil, but had minimal effect on the Paulding clay and Hoytville silty clay soils. Maize relative yield under free subsurface drainage is predicted to decrease in the future, causing the relative yield difference between free subsurface drainage and subirrigation practices to nearly double from 9% to 16% between the historic and future periods. Consequently, the subirrigation practice can potentially mitigate adverse future climate change impacts on maize yield in northwest Ohio.

Suggested Citation

  • Gunn, Kpoti M. & Baule, William J. & Frankenberger, Jane R. & Gamble, Debra L. & Allred, Barry J. & Andresen, Jeff A. & Brown, Larry C., 2018. "Modeled climate change impacts on subirrigated maize relative yield in northwest Ohio," Agricultural Water Management, Elsevier, vol. 206(C), pages 56-66.
  • Handle: RePEc:eee:agiwat:v:206:y:2018:i:c:p:56-66
    DOI: 10.1016/j.agwat.2018.04.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418304931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.04.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ale, S. & Bowling, L.C. & Brouder, S.M. & Frankenberger, J.R. & Youssef, M.A., 2009. "Simulated effect of drainage water management operational strategy on hydrology and crop yield for Drummer soil in the Midwestern United States," Agricultural Water Management, Elsevier, vol. 96(4), pages 653-665, April.
    2. Mejia, M. N. & Madramootoo, C. A. & Broughton, R. S., 2000. "Influence of water table management on corn and soybean yields," Agricultural Water Management, Elsevier, vol. 46(1), pages 73-89, November.
    3. Singh, R. & Helmers, M.J. & Qi, Zhiming, 2006. "Calibration and validation of DRAINMOD to design subsurface drainage systems for Iowa's tile landscapes," Agricultural Water Management, Elsevier, vol. 85(3), pages 221-232, October.
    4. Baule, William & Allred, Barry & Frankenberger, Jane & Gamble, Debra & Andresen, Jeff & Gunn, Kpoti M. & Brown, Larry, 2017. "Northwest Ohio crop yield benefits of water capture and subirrigation based on future climate change projections," Agricultural Water Management, Elsevier, vol. 189(C), pages 87-97.
    5. Wang, X. & Mosley, C.T. & Frankenberger, J.R. & Kladivko, E.J., 2006. "Subsurface drain flow and crop yield predictions for different drain spacings using DRAINMOD," Agricultural Water Management, Elsevier, vol. 79(2), pages 113-136, January.
    6. Negm, L.M. & Youssef, M.A. & Skaggs, R.W. & Chescheir, G.M. & Jones, J., 2014. "DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land," Agricultural Water Management, Elsevier, vol. 137(C), pages 30-45.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Askar, Manal H & Youssef, Mohamed A & Chescheir, George M & Negm, Lamyaa M & King, Kevin W & Hesterberg, Dean L & Amoozegar, Aziz & Skaggs, R. Wayne, 2020. "DRAINMOD Simulation of macropore flow at subsurface drained agricultural fields: Model modification and field testing," Agricultural Water Management, Elsevier, vol. 242(C).
    2. Reinhart, Benjamin D. & Frankenberger, Jane R. & Hay, Christopher H. & Helmers, Matthew J., 2019. "Simulated water quality and irrigation benefits from drainage water recycling at two tile-drained sites in the U.S. Midwest," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    3. Yasir Abduljaleel & Ahmed Awad & Nadhir Al-Ansari & Ali Salem & Abdelazim Negm & Mohamed Elsayed Gabr, 2023. "Assessment of Subsurface Drainage Strategies Using DRAINMOD Model for Sustainable Agriculture: A Review," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    4. Ghane, Ehsan & Askar, Manal H. & Skaggs, R. Wayne, 2021. "Design drainage rates to optimize crop production for subsurface-drained fields," Agricultural Water Management, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Negm, L.M. & Youssef, M.A. & Skaggs, R.W. & Chescheir, G.M. & Jones, J., 2014. "DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and crop growth for drained crop land," Agricultural Water Management, Elsevier, vol. 137(C), pages 30-45.
    2. Negm, L.M. & Youssef, M.A. & Chescheir, G.M. & Skaggs, R.W., 2016. "DRAINMOD-based tools for quantifying reductions in annual drainage flow and nitrate losses resulting from drainage water management on croplands in eastern North Carolina," Agricultural Water Management, Elsevier, vol. 166(C), pages 86-100.
    3. Youssef, Mohamed A. & Abdelbaki, Ahmed M. & Negm, Lamyaa M. & Skaggs, R.Wayne & Thorp, Kelly R. & Jaynes, Dan B., 2018. "DRAINMOD-simulated performance of controlled drainage across the U.S. Midwest," Agricultural Water Management, Elsevier, vol. 197(C), pages 54-66.
    4. Youssef, Mohamed A. & Liu, Yu & Chescheir, George M. & Skaggs, R. Wayne & Negm, Lamyaa M., 2021. "DRAINMOD modeling framework for simulating controlled drainage effect on lateral seepage from artificially drained fields," Agricultural Water Management, Elsevier, vol. 254(C).
    5. Liang, Hao & Qi, Zhiming & Hu, Kelin & Li, Baoguo & Prasher, Shiv O., 2018. "Modelling subsurface drainage and nitrogen losses from artificially drained cropland using coupled DRAINMOD and WHCNS models," Agricultural Water Management, Elsevier, vol. 195(C), pages 201-210.
    6. Turunen, M. & Warsta, L. & Paasonen-Kivekäs, M. & Nurminen, J. & Myllys, M. & Alakukku, L. & Äijö, H. & Puustinen, M. & Koivusalo, H., 2013. "Modeling water balance and effects of different subsurface drainage methods on water outflow components in a clayey agricultural field in boreal conditions," Agricultural Water Management, Elsevier, vol. 121(C), pages 135-148.
    7. Ale, Srinivasulu & Gowda, Prasanna H. & Mulla, David J. & Moriasi, Daniel N. & Youssef, Mohamed A., 2013. "Comparison of the performances of DRAINMOD-NII and ADAPT models in simulating nitrate losses from subsurface drainage systems," Agricultural Water Management, Elsevier, vol. 129(C), pages 21-30.
    8. Revuelta-Acosta, J.D. & Flanagan, D.C. & Engel, B.A. & King, K.W., 2021. "Improvement of the Water Erosion Prediction Project (WEPP) model for quantifying field scale subsurface drainage discharge," Agricultural Water Management, Elsevier, vol. 244(C).
    9. Ghane, Ehsan & Askar, Manal H., 2021. "Predicting the effect of drain depth on profitability and hydrology of subsurface drainage systems across the eastern USA," Agricultural Water Management, Elsevier, vol. 258(C).
    10. Mariusz Sojka & Michał Kozłowski & Rafał Stasik & Michał Napierała & Barbara Kęsicka & Rafał Wróżyński & Joanna Jaskuła & Daniel Liberacki & Jerzy Bykowski, 2019. "Sustainable Water Management in Agriculture—The Impact of Drainage Water Management on Groundwater Table Dynamics and Subsurface Outflow," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    11. Malakshahi, Amir- Ashkan & Darzi- Naftchali, Abdullah & Mohseni, Behrooz, 2020. "Analyzing water table depth fluctuation response to evapotranspiration involving DRAINMOD model," Agricultural Water Management, Elsevier, vol. 234(C).
    12. Kwon, Ho-Young & Grunwald, Sabine & Beck, Howard W. & Jung, Yunchul & Daroub, Samira H. & Lang, Timothy A. & Morgan, Kelly T., 2010. "Ontology-based simulation of water flow in organic soils applied to Florida sugarcane," Agricultural Water Management, Elsevier, vol. 97(1), pages 112-122, January.
    13. Salazar, Osvaldo & Wesström, Ingrid & Youssef, Mohamed A. & Skaggs, R. Wayne & Joel, Abraham, 2009. "Evaluation of the DRAINMOD-N II model for predicting nitrogen losses in a loamy sand under cultivation in south-east Sweden," Agricultural Water Management, Elsevier, vol. 96(2), pages 267-281, February.
    14. Matinzadeh, Mohammad Mehdi & Abedi Koupai, Jahangir & Sadeghi-Lari, Adnan & Nozari, Hamed & Shayannejad, Mohammad, 2017. "Development of an innovative integrated model for the simulation of nitrogen dynamics in farmlands with drainage systems using the system dynamics approach," Ecological Modelling, Elsevier, vol. 347(C), pages 11-28.
    15. Bou Lahdou, Guy & Bowling, Laura & Frankenberger, Jane & Kladivko, Eileen, 2019. "Hydrologic controls of controlled and free draining subsurface drainage systems," Agricultural Water Management, Elsevier, vol. 213(C), pages 605-615.
    16. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    17. Sanchez Valero, Caroline & Madramootoo, Chandra A. & Stampfli, Nicolas, 2007. "Water table management impacts on phosphorus loads in tile drainage," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 71-80, April.
    18. Qian, Yingzhi & Zhu, Yan & Ye, Ming & Huang, Jiesheng & Wu, Jingwei, 2021. "Experiment and numerical simulation for designing layout parameters of subsurface drainage pipes in arid agricultural areas," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Miller, Samuel A. & Witter, Jonathan D. & Lyon, Steve W., 2022. "The impact of automated drainage water management on groundwater, soil moisture, and tile outlet discharge following storm events," Agricultural Water Management, Elsevier, vol. 272(C).
    20. Amir Sedaghatdoost & Hamed Ebrahimian & Abdolmajid Liaghat, 2019. "An Inverse Modeling Approach to Calibrate Parameters for a Drainage Model with Two Optimization Algorithms on Homogeneous/Heterogeneous Soil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1383-1395, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:206:y:2018:i:c:p:56-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.