IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v176y2019ics0308521x18306280.html
   My bibliography  Save this article

The future of intercropping under growing resource scarcity and declining grain prices - A model analysis based on a case study in Northwest China

Author

Listed:
  • Hong, Yu
  • Berentsen, Paul
  • Heerink, Nico
  • Shi, Minjun
  • van der Werf, Wopke

Abstract

Intercropping, i.e. mixed crop species cultivation on a field, can potentially reduce pressure on land and water resources by generating higher resource use efficiencies and crop yields through exploitation of complementarities between species. Intercropping systems in China and elsewhere have come under pressure through labor migration, growing water scarcity, changing crop prices and other factors. However, little hard evidence is available on how these socio-economic factors interplay and affect the prevalence of intercropping systems now and in the near future. The objective of this study is to explore the effect of growing scarcity of (water and labor) resources and declining (maize) grain prices on the share of intercropping in the optimal cropping plan and on associated agricultural income levels in an intercropping-dominated agricultural system in China. To undertake this analysis, we developed a mathematical programming model to simulate crop production for a model village in Gaotai county in the Hexi Corridor in northwest China, for given resources and economic conditions in 2013 and possible changes (scenarios) in the future. In the Hexi Corridor, conventional wheat/maize intercropping contributed greatly to rising food production while cash crops integrated with maize provided important cash income. With the introduction of seed crops and stricter water regulations, intercropping has become less prevalent in this area in recent years. In the absence of water constraints and at price levels and labor availability in 2013, our model results indicate that an optimal land use would entail that all land would be devoted to intercropping. Sole cumin and sole cotton enter the optimal cropping plan when water becomes scarce and the maize price declines substantially, while increases in hired labor wages have a strong negative impact on intercropping only when on-farm labor becomes scarce.

Suggested Citation

  • Hong, Yu & Berentsen, Paul & Heerink, Nico & Shi, Minjun & van der Werf, Wopke, 2019. "The future of intercropping under growing resource scarcity and declining grain prices - A model analysis based on a case study in Northwest China," Agricultural Systems, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:agisys:v:176:y:2019:i:c:s0308521x18306280
    DOI: 10.1016/j.agsy.2019.102661
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X18306280
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2019.102661?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Til Feike & Reiner Doluschitz & Qing Chen & Simone Graeff-Hönninger & Wilhelm Claupein, 2012. "How to Overcome the Slow Death of Intercropping in the North China Plain," Sustainability, MDPI, vol. 4(10), pages 1-16, October.
    2. Zhang, Junlian, 2007. "Barriers to water markets in the Heihe River basin in northwest China," Agricultural Water Management, Elsevier, vol. 87(1), pages 32-40, January.
    3. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    4. Minjun Shi & Xiaojun Wang & Hong Yang & Tao Wang, 2014. "Pricing or Quota? A Solution to Water Scarcity in Oasis Regions in China: A Case Study in the Heihe River Basin," Sustainability, MDPI, vol. 6(11), pages 1-20, October.
    5. Feike, Til & Henseler, Martin, 2017. "Multiple Policy Instruments for Sustainable Water Management in Crop Production - A Modeling Study for the Chinese Aksu-Tarim Region," Ecological Economics, Elsevier, vol. 135(C), pages 42-54.
    6. Gale, Fred, 2013. "Growth and Evolution in China's Agricultural Support Policies," Economic Research Report 155385, United States Department of Agriculture, Economic Research Service.
    7. Chuang-lin Fang & Chao Bao & Jin-chuan Huang, 2007. "Management Implications to Water Resources Constraint Force on Socio-economic System in Rapid Urbanization: A Case Study of the Hexi Corridor, NW China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1613-1633, September.
    8. Willey, R. W., 1990. "Resource use in intercropping systems," Agricultural Water Management, Elsevier, vol. 17(1-3), pages 215-231, January.
    9. Bao, Chao & Fang, Chuang-lin, 2007. "Water resources constraint force on urbanization in water deficient regions: A case study of the Hexi Corridor, arid area of NW China," Ecological Economics, Elsevier, vol. 62(3-4), pages 508-517, May.
    10. Yong Wang & Hong-lang Xiao & Rui-fang Wang, 2009. "Water Scarcity and Water Use in Economic Systems in Zhangye City, Northwestern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2655-2668, October.
    11. H. Holly Wang & Yanbing Wang & Michael S. Delgado, 2014. "The Transition to Modern Agriculture: Contract Farming in Developing Economies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(5), pages 1257-1271.
    12. Gou, Fang & Yin, Wen & Hong, Yu & van der Werf, Wopke & Chai, Qiang & Heerink, Nico & van Ittersum, Martin K., 2017. "On yield gaps and yield gains in intercropping: Opportunities for increasing grain production in northwest China," Agricultural Systems, Elsevier, vol. 151(C), pages 96-105.
    13. Zhang, Lei & Zhu, Xueqin & Heerink, Nico & Shi, Xiaoping, 2014. "Does output market development affect irrigation water institutions? Insights from a case study in northern China," Agricultural Water Management, Elsevier, vol. 131(C), pages 70-78.
    14. Zhang, Jun-Lian & Zhang, Feng-Rong, 2008. "Mutual monitoring in a tradable water rights system: A case study of Zhangye City in Northwest China," Agricultural Water Management, Elsevier, vol. 95(3), pages 331-338, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nong, Yixin & Yin, Changbin & Yi, Xiaoyan & Ren, Jing & Chien, Hsiaoping, 2021. "Smallholder farmer preferences for diversifying farming with cover crops of sustainable farm management: A discrete choice experiment in Northwest China," Ecological Economics, Elsevier, vol. 186(C).
    2. Ren Yang & Xiuli Luo & Qian Xu & Xin Zhang & Jiapei Wu, 2021. "Measuring the Impact of the Multiple Cropping Index of Cultivated Land during Continuous and Rapid Rise of Urbanization in China: A Study from 2000 to 2015," Land, MDPI, vol. 10(5), pages 1-22, May.
    3. Anna Wenda-Piesik & Dariusz Piesik, 2020. "Diversity of Species and the Occurrence and Development of a Specialized Pest Population—A Review Article," Agriculture, MDPI, vol. 11(1), pages 1-14, December.
    4. Baoshu Wu & Meifang Liu & Yufei Wan & Zhenjiang Song, 2023. "Evolution and Coordination of Cultivated Land Multifunctionality in Poyang Lake Ecological Economic Zone," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    5. Hong, Yu & Heerink, Nico & van der Werf, Wopke, 2020. "Farm size and smallholders’ use of intercropping in Northwest China," Land Use Policy, Elsevier, vol. 99(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye Sun & Tomohiro Akiyama, 2018. "An Empirical Study on Sustainable Agriculture Land Use Right Transfer in the Heihe River Basin," Sustainability, MDPI, vol. 10(2), pages 1-13, February.
    2. Gou, Fang & Yin, Wen & Hong, Yu & van der Werf, Wopke & Chai, Qiang & Heerink, Nico & van Ittersum, Martin K., 2017. "On yield gaps and yield gains in intercropping: Opportunities for increasing grain production in northwest China," Agricultural Systems, Elsevier, vol. 151(C), pages 96-105.
    3. Hong, Yu & Heerink, Nico & van der Werf, Wopke, 2020. "Farm size and smallholders’ use of intercropping in Northwest China," Land Use Policy, Elsevier, vol. 99(C).
    4. Takahashi, Taro & Aizaki, Hideo & Ge, Yingchun & Ma, Mingguo & Nakashima, Yasuhiro & Sato, Takeshi & Wang, Weizhen & Yamada, Nanae, 2013. "Agricultural water trade under farmland fragmentation: A simulation analysis of an irrigation district in northwestern China," Agricultural Water Management, Elsevier, vol. 122(C), pages 63-66.
    5. Na Li & Xiaojun Wang & Minjun Shi & Hong Yang, 2015. "Economic Impacts of Total Water Use Control in the Heihe River Basin in Northwestern China—An Integrated CGE-BEM Modeling Approach," Sustainability, MDPI, vol. 7(3), pages 1-19, March.
    6. Chao Bao & Chuang-lin Fang, 2012. "Water Resources Flows Related to Urbanization in China: Challenges and Perspectives for Water Management and Urban Development," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 531-552, January.
    7. Guifang Li & Dingyang Zhou & Minjun Shi, 2019. "How Do Farmers Respond to Water Resources Management Policy in the Heihe River Basin of China?," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    8. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    9. Lou, Bo & Ulgiati, Sergio, 2013. "Identifying the environmental support and constraints to the Chinese economic growth—An application of the Emergy Accounting method," Energy Policy, Elsevier, vol. 55(C), pages 217-233.
    10. Boyu Wang & Xiang Gao, 2021. "Temporal and spatial variations of water resources constraint intensity on urbanization in the Shiyang River Basin, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10038-10055, July.
    11. Feike, Til & Henseler, Martin, 2017. "Multiple Policy Instruments for Sustainable Water Management in Crop Production - A Modeling Study for the Chinese Aksu-Tarim Region," Ecological Economics, Elsevier, vol. 135(C), pages 42-54.
    12. Mingguang Tu & Futao Wang & Yi Zhou & Shixin Wang, 2016. "Gridded Water Resource Distribution Simulation for China Based on Third-Order Basin Data from 2002," Sustainability, MDPI, vol. 8(12), pages 1-14, December.
    13. Wu, Feng & Zhan, Jinyan & Güneralp, İnci, 2015. "Present and future of urban water balance in the rapidly urbanizing Heihe River Basin, Northwest China," Ecological Modelling, Elsevier, vol. 318(C), pages 254-264.
    14. Chao Bao & Dongmei He, 2019. "Scenario Modeling of Urbanization Development and Water Scarcity Based on System Dynamics: A Case Study of Beijing–Tianjin–Hebei Urban Agglomeration, China," IJERPH, MDPI, vol. 16(20), pages 1-19, October.
    15. Yunqiang Liu & Jiuping Xu & Huawei Luo, 2014. "An Integrated Approach to Modelling the Economy-Society-Ecology System in Urbanization Process," Sustainability, MDPI, vol. 6(4), pages 1-27, April.
    16. Hailiang Ma & Nan-Ting Chou & Lei Wang, 2016. "Dynamic Coupling Analysis of Urbanization and Water Resource Utilization Systems in China," Sustainability, MDPI, vol. 8(11), pages 1-18, November.
    17. Chuyu Xia & Yan Li & Yanmei Ye & Zhou Shi, 2016. "An Integrated Approach to Explore the Relationship Among Economic, Construction Land Use, and Ecology Subsystems in Zhejiang Province, China," Sustainability, MDPI, vol. 8(5), pages 1-20, May.
    18. Guangdong Li & Chuanglin Fang, 2014. "Analyzing the multi-mechanism of regional inequality in China," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(1), pages 155-182, January.
    19. ELOUHICHI Kamel & TEMURSHOEV Umed & COLEN Liesbeth & GOMEZ Y PALOMA Sergio, 2019. "Upscaling the productivity performance of the Agricultural Commercialization Cluster Initiative in Ethiopia," JRC Research Reports JRC117562, Joint Research Centre.
    20. Li, Guifang & Shi, Minjun & Zhou, Dingyang, 2021. "How much will farmers be compensated for water reallocation from agricultural water to the local ecological sector on the edge of an oasis in the Heihe River Basin?," Agricultural Water Management, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:176:y:2019:i:c:s0308521x18306280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.