IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v158y2017icp78-92.html
   My bibliography  Save this article

Yield gaps in Dutch arable farming systems: Analysis at crop and crop rotation level

Author

Listed:
  • Silva, João Vasco
  • Reidsma, Pytrik
  • van Ittersum, Martin K.

Abstract

Arable farming systems in the Netherlands are characterized by crop rotations in which potato, sugar beet, spring onion, winter wheat and spring barley are the most important crops. The objectives of this study were to decompose crop yield gaps within such rotations into efficiency, resource and technology yield gaps and to explain those yield gaps based on observed cropping frequencies and alternative farmers' objectives. Data from specialized Dutch arable farms between 2008 and 2012 were used. Production frontiers and efficiency yield gaps were estimated using the stochastic frontier framework. The resource yield gap was quantified through the estimation of highest farmers' yields (YHF, average across farms with actual yields above the 90th percentile). Crop model simulations and variety trials were compiled to assess climatic potential yields (Yp) and technology yield gaps. The contribution of crop area shares and farmers' objectives to actual yields were assessed using regression analysis and based on five different farm level indicators (N production, energy production, gross margin, nitrogen-use efficiency and labour use), respectively.

Suggested Citation

  • Silva, João Vasco & Reidsma, Pytrik & van Ittersum, Martin K., 2017. "Yield gaps in Dutch arable farming systems: Analysis at crop and crop rotation level," Agricultural Systems, Elsevier, vol. 158(C), pages 78-92.
  • Handle: RePEc:eee:agisys:v:158:y:2017:i:c:p:78-92
    DOI: 10.1016/j.agsy.2017.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X16306758
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2017.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tittonell, P. & van Wijk, M.T. & Herrero, M. & Rufino, M.C. & de Ridder, N. & Giller, K.E., 2009. "Beyond resource constraints - Exploring the biophysical feasibility of options for the intensification of smallholder crop-livestock systems in Vihiga district, Kenya," Agricultural Systems, Elsevier, vol. 101(1-2), pages 1-19, June.
    2. Henderson, B. & Godde, C. & Medina-Hidalgo, D. & van Wijk, M. & Silvestri, S. & Douxchamps, S. & Stephenson, E. & Power, B. & Rigolot, C. & Cacho, O. & Herrero, M., 2016. "Closing system-wide yield gaps to increase food production and mitigate GHGs among mixed crop–livestock smallholders in Sub-Saharan Africa," Agricultural Systems, Elsevier, vol. 143(C), pages 106-113.
    3. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    4. Monjardino, M. & McBeath, T. & Ouzman, J. & Llewellyn, R. & Jones, B., 2015. "Farmer risk-aversion limits closure of yield and profit gaps: A study of nitrogen management in the southern Australian wheatbelt," Agricultural Systems, Elsevier, vol. 137(C), pages 108-118.
    5. de Ponti, Tomek & Rijk, Bert & van Ittersum, Martin K., 2012. "The crop yield gap between organic and conventional agriculture," Agricultural Systems, Elsevier, vol. 108(C), pages 1-9.
    6. Pytrik Reidsma & Alfons Oude Lansink & Frank Ewert, 2009. "Economic impacts of climatic variability and subsidies on European agriculture and observed adaptation strategies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(1), pages 35-59, January.
    7. Verena Seufert & Navin Ramankutty & Jonathan A. Foley, 2012. "Comparing the yields of organic and conventional agriculture," Nature, Nature, vol. 485(7397), pages 229-232, May.
    8. Stijn Reinhard & C.A. Knox Lovell & Geert Thijssen, 1999. "Econometric Estimation of Technical and Environmental Efficiency: An Application to Dutch Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 44-60.
    9. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    10. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Komarek, Adam M. & Thierfelder, Christian & Steward, Peter R., 2021. "Conservation agriculture improves adaptive capacity of cropping systems to climate stress in Malawi," Agricultural Systems, Elsevier, vol. 190(C).
    2. Giller, Ken E. & Andersson, Jens & Delaune, Thomas & Silva, João Vasco & Descheemaeker, Katrien & van de Ven, Gerrie & Schut, Antonius G.T. & van Wijk, Mark & Hammond, Jim & Hochman, Zvi & Taulya, God, 2022. "IFAD Research Series 83: The future of farming: who will produce our food?," IFAD Research Series 322005, International Fund for Agricultural Development (IFAD).
    3. Silva, João Vasco & Pede, Valerien O. & Radanielson, Ando M. & Kodama, Wataru & Duarte, Ary & de Guia, Annalyn H. & Malabayabas, Arelene Julia B. & Pustika, Arlyna Budi & Argosubekti, Nuning & Vithoon, 2022. "Revisiting yield gaps and the scope for sustainable intensification for irrigated lowland rice in Southeast Asia," Agricultural Systems, Elsevier, vol. 198(C).
    4. Kotir, Julius H. & Bell, Lindsay W. & Kirkegaard, John A. & Whish, Jeremy & Aikins, Kojo Atta, 2022. "Labour demand – The forgotten input influencing the execution and adoptability of alternative cropping systems in Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).
    5. Silva, João Vasco & Reidsma, Pytrik & Lourdes Velasco, Ma. & Laborte, Alice G. & van Ittersum, Martin K., 2018. "Intensification of rice-based farming systems in Central Luzon, Philippines: Constraints at field, farm and regional levels," Agricultural Systems, Elsevier, vol. 165(C), pages 55-70.
    6. Grados, D. & García, S. & Schrevens, E., 2020. "Assessing the potato yield gap in the Peruvian Central Andes," Agricultural Systems, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lakner, Sebastian & Breustedt, Gunnar, 2015. "Efficiency analysis of organic farming systems- a review of methods, topics, results, and conclusions," 2015 Conference, August 9-14, 2015, Milan, Italy 212025, International Association of Agricultural Economists.
    2. Rouf, Abdur, 2015. "Conventional vs Natural Flood Control and Drainage Managements in a Tidal Coastal Zone: An Evaluation from a Productive Efficiency Perspective," 89th Annual Conference, April 13-15, 2015, Warwick University, Coventry, UK 256023, Agricultural Economics Society.
    3. Tzouvelekas, Vangelis & Pantzios, Christos J. & Fotopoulos, Christos, 2001. "Technical efficiency of alternative farming systems: the case of Greek organic and conventional olive-growing farms," Food Policy, Elsevier, vol. 26(6), pages 549-569, December.
    4. Antonio Alvarez & Carlos Arias, 2014. "A selection of relevant issues in applied stochastic frontier analysis," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 3-11.
    5. Ali, M.K., 2018. "Estimation of irrigation water use efficiency with a stochastic frontier model," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277354, International Association of Agricultural Economists.
    6. Temoso, Omphile & Villano, Renato & Hadley, David, 2016. "Evaluating the productivity gap between commercial and traditional beef production systems in Botswana," Agricultural Systems, Elsevier, vol. 149(C), pages 30-39.
    7. Hang Xiong, 2012. "Effects of One-Sided Fiscal Decentralization on Environmental Efficiency of Chinese Provinces," Working Papers halshs-00672450, HAL.
    8. Hang Xiong, 2012. "Effects of One-Sided Fiscal Decentralization on Environmental Efficiency of Chinese Provinces," CERDI Working papers halshs-00672450, HAL.
    9. Zhong, Shen & Li, Junwei & Chen, Xi & Wen, Hongmei, 2022. "A multi-hierarchy meta-frontier approach for measuring green total factor productivity: An application of pig breeding in China," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    10. Lilai Xu (ed.), 2011. "China’s Economy in the Post-WTO Environment," Books, Edward Elgar Publishing, number 14270.
    11. Tateishi, Henrique Ryosuke & Bragagnolo, Cassiano & de Faria, Rosane Nunes, 2020. "Economic and environmental efficiencies of greenhouse gases’ emissions under institutional influence," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    12. Ferreira, Marcelo Dias Paes & Féres, José Gustavo, 2020. "Farm size and Land use efficiency in the Brazilian Amazon," Land Use Policy, Elsevier, vol. 99(C).
    13. Bravo-Ureta, Boris E. & Jara-Rojas, Roberto & Lachaud, Michee A. & Moreira L., Victor H. & Scheierling, Susanne M., 2015. "Water and Farm Efficiency: Insights from the Frontier Literature," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 206076, Agricultural and Applied Economics Association.
    14. Khor, Ling Yee & Zeller, Manfred, 2012. "Doubts on input quality: The effect of inaccurate fertilizer content on the estimation of production functions and technical efficiency," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126212, International Association of Agricultural Economists.
    15. Luis Antonio Galiano Bastarrica & Eva M. Buitrago Esquinas & María Ángeles Caraballo Pou & Rocío Yñiguez Ovando, 2023. "Environmental adjustment of the EU27 GDP: an econometric quantitative model," Environment Systems and Decisions, Springer, vol. 43(1), pages 115-128, March.
    16. Hang XIONG, 2012. "Effects of One-Sided Fiscal Decentralization on Environmental Efficiency of Chinese Provinces," Working Papers 201208, CERDI.
    17. Jianjun Tang & Henk Folmer & Arno J. Vlist & Jianhong Xue, 2014. "The impacts of management reform on irrigation water use efficiency in the Guanzhong plain, China," Papers in Regional Science, Wiley Blackwell, vol. 93(2), pages 455-475, June.
    18. Yanrui Wu, 2011. "Has Capital been Utilized Efficiently in China?," Chapters, in: Lilai Xu (ed.), China’s Economy in the Post-WTO Environment, chapter 12, Edward Elgar Publishing.
    19. Neumann, Kathleen & Verburg, Peter H. & Stehfest, Elke & Müller, Christoph, 2010. "The yield gap of global grain production: A spatial analysis," Agricultural Systems, Elsevier, vol. 103(5), pages 316-326, June.
    20. Pantzios, Christos J. & Rozakis, Stelios & Tzouvelekas, Vangelis, 2002. "Assessing the Perspectives of EU Cotton Farming: Technical and Scale Efficiencies of Greek Cotton Growers," 2002 International Congress, August 28-31, 2002, Zaragoza, Spain 24844, European Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:158:y:2017:i:c:p:78-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.