IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v115y2013icp10-20.html
   My bibliography  Save this article

An integrated assessment of business risk for pasture-based dairy farm systems intensification

Author

Listed:
  • Fariña, S.R.
  • Alford, A.
  • Garcia, S.C.
  • Fulkerson, W.J.

Abstract

The increasing cost/price pressures on Australian dairy farmers mean that they will need to increase on-farm productivity by producing more milk per ha from home-grown forage. Since there is a limit to the potential yield from pasture an innovative intensification system that integrates pasture and forage crops has been developed. This complementary forages system (CFS) has shown to increase milk production per ha from home-grown forage beyond pasture potential. An integrated modelling approach was used to assess the business risk of this system and compare it to a system with increased use of concentrates, the pasture plus grain (PG) system and to the initial situation, the Base system. First, based on the results of a 2-year CFS farmlet study, the systems’ milk production, forage and supplements consumption were simulated for a 140ha farm using a decision support model. Second, the systems’ operating profit was calculated using a whole-farm budgeting approach. Third, the effect of inter-annual variation in key variables related to operating profit was assessed using a stochastic budgeting technique to calculate cumulative probability of profit as a measure of business risk. The selected variables were: price of milk, concentrates, urea fertiliser and irrigation water and yields of pasture and forage crops. The inter-annual variability of these yields was simulated for 100years of daily weather data assuming limited irrigation using validated biophysical simulation models. The sum of the forage crops yields had a lower inter-annual variability than pasture yields, which were more closely associated to annual rainfall. This lower variability was due to the high water use efficiency of maize, prioritized in the irrigation. The risk analysis showed that milk price was the variable with the highest impact on operating profit followed by forage yields, whereas urea fertiliser had the lowest effect. When integrating all variables, PG showed the highest business risk, followed by Base and CFS, respectively. Very high standards were assumed for the management of forage crops, pastures and feeding and therefore these results may not apply to all dairy farmers. However, this integrative systems analysis approach highlighted the potential of intensification alternatives with a diversified home-grown forage base to reduce business risk compared to systems based on only pasture and increased use of concentrates.

Suggested Citation

  • Fariña, S.R. & Alford, A. & Garcia, S.C. & Fulkerson, W.J., 2013. "An integrated assessment of business risk for pasture-based dairy farm systems intensification," Agricultural Systems, Elsevier, vol. 115(C), pages 10-20.
  • Handle: RePEc:eee:agisys:v:115:y:2013:i:c:p:10-20
    DOI: 10.1016/j.agsy.2012.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X1200159X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2012.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marra, Michele & Pannell, David J. & Abadi Ghadim, Amir, 2003. "The economics of risk, uncertainty and learning in the adoption of new agricultural technologies: where are we on the learning curve?," Agricultural Systems, Elsevier, vol. 75(2-3), pages 215-234.
    2. Tom Kompas & Tuong Nhu Che, 2006. "Technology choice and efficiency on Australian dairy farms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(1), pages 65-83, March.
    3. Ford, Stephen A. & Ford, Beth Pride & Spreen, Thomas H., 1995. "Evaluation Of Alternative Risk Specifications In Farm Programming Models," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 24(1), pages 1-11, April.
    4. Amir K. Abadi Ghadim & David J. Pannell & Michael P. Burton, 2005. "Risk, uncertainty, and learning in adoption of a crop innovation," Agricultural Economics, International Association of Agricultural Economists, vol. 33(1), pages 1-9, July.
    5. Kingwell, R. S., 1994. "Risk attitude and dryland farm management," Agricultural Systems, Elsevier, vol. 45(2), pages 191-202.
    6. Malcolm, Bill & Sinnett, Alex, 2007. "Future Productivity and Growth in Dairy Farm Businesses in New Zealand: the Status Quo is Not an Option," Papers 234175, University of Melbourne, Melbourne School of Land and Environment.
    7. John M. Antle, 1983. "Incorporating Risk in Production Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 65(5), pages 1099-1106.
    8. Cacho, O. J. & Bywater, A. C. & Dillon, J. L., 1999. "Assessment of production risk in grazing models," Agricultural Systems, Elsevier, vol. 60(2), pages 87-98, May.
    9. Chapman, D.F. & Kenny, S.N. & Beca, D. & Johnson, I.R., 2008. "Pasture and forage crop systems for non-irrigated dairy farms in southern Australia. 2. Inter-annual variation in forage supply, and business risk," Agricultural Systems, Elsevier, vol. 97(3), pages 126-138, June.
    10. Pannell, D. J., 1999. "On the estimation of on-farm benefits of agricultural research," Agricultural Systems, Elsevier, vol. 61(2), pages 123-134, August.
    11. Antle, John M., 1983. "Incorporating Risk In Production Analysis," 1983 Annual Meeting, July 31-August 3, West Lafayette, Indiana 279106, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    12. Chapman, D.F. & Kenny, S.N. & Beca, D. & Johnson, I.R., 2008. "Pasture and forage crop systems for non-irrigated dairy farms in southern Australia. 1. Physical production and economic performance," Agricultural Systems, Elsevier, vol. 97(3), pages 108-125, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baudracco, Javier & Lazzarini, Belén & Rossler, Noelia & Gastaldi, Laura & Jauregui, José & Fariña, Santiago, 2022. "Strategies to double milk production per farm in Argentina: Investment, economics and risk analysis," Agricultural Systems, Elsevier, vol. 197(C).
    2. Komarek, Adam M. & Bell, Lindsay W. & Whish, Jeremy P.M. & Robertson, Michael J. & Bellotti, William D., 2015. "Whole-farm economic, risk and resource-use trade-offs associated with integrating forages into crop–livestock systems in western China," Agricultural Systems, Elsevier, vol. 133(C), pages 63-72.
    3. Olivia Florence Godber & Boughaleb Farahat Laroussi & Mouad Chentouf & Richard Wall, 2016. "Intensification of Mediterranean Goat Production Systems: A Case Study in Northern Morocco," Agriculture, MDPI, vol. 6(2), pages 1-26, April.
    4. Zinnanti, Cinzia & Schimmenti, Emanuele & Borsellino, Valeria & Paolini, Giulio & Severini, Simone, 2019. "Economic performance and risk of farming systems specialized in perennial crops: An analysis of Italian hazelnut production," Agricultural Systems, Elsevier, vol. 176(C).
    5. Robbie Maris & Zack Dorner, 2021. "Cost Efficiency Analysis using Operating Profit Margin for the New Zealand Dairy Industry," Working Papers in Economics 21/04, University of Waikato.
    6. Fariña, S.R. & Chilibroste, P., 2019. "Opportunities and challenges for the growth of milk production from pasture: The case of farm systems in Uruguay," Agricultural Systems, Elsevier, vol. 176(C).
    7. Ash, Andrew & Hunt, Leigh & McDonald, Cam & Scanlan, Joe & Bell, Lindsay & Cowley, Robyn & Watson, Ian & McIvor, John & MacLeod, Neil, 2015. "Boosting the productivity and profitability of northern Australian beef enterprises: Exploring innovation options using simulation modelling and systems analysis," Agricultural Systems, Elsevier, vol. 139(C), pages 50-65.
    8. Kalaugher, Electra & Beukes, Pierre & Bornman, Janet F. & Clark, Anthony & Campbell, David I., 2017. "Modelling farm-level adaptation of temperate, pasture-based dairy farms to climate change," Agricultural Systems, Elsevier, vol. 153(C), pages 53-68.
    9. Stirling, Sofía & Fariña, Santiago & Pacheco, David & Vibart, Ronaldo, 2021. "Whole-farm modelling of grazing dairy systems in Uruguay," Agricultural Systems, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nasca, J.A. & Feldkamp, C.R. & Arroquy, J.I. & Colombatto, D., 2015. "Efficiency and stability in subtropical beef cattle grazing systems in the northwest of Argentina," Agricultural Systems, Elsevier, vol. 133(C), pages 85-96.
    2. Behrendt, Karl & Cacho, Oscar & Scott, James M. & Jones, Randall, 2016. "Using seasonal stochastic dynamic programming to identify optimal management decisions that achieve maximum economic sustainable yields from grasslands under climate risk," Agricultural Systems, Elsevier, vol. 145(C), pages 13-23.
    3. Pannell, David J. & Malcolm, Bill & Kingwell, Ross S., 2000. "Are we risking too much? Perspectives on risk in farm modelling," Agricultural Economics, Blackwell, vol. 23(1), pages 69-78, June.
    4. Power, Brendan & Cacho, Oscar J, 2014. "Identifying risk-efficient strategies using stochastic frontier analysis and simulation: An application to irrigated cropping in Australia," Agricultural Systems, Elsevier, vol. 125(C), pages 23-32.
    5. Hurley, Terrance M., 2010. "A review of agricultural production risk in the developing world," Working Papers 188476, HarvestChoice.
    6. Behrendt, Karl & Cacho, Oscar J. & Scott, James M. & Jones, Randall E., 2009. "Bioeconomic analysis of fertiliser input costs on pasture resource management under climatic uncertainty," 2009 Conference (53rd), February 11-13, 2009, Cairns, Australia 47628, Australian Agricultural and Resource Economics Society.
    7. Bilotto, Franco & Recavarren, Paulo & Vibart, Ronaldo & Machado, Claudio F., 2019. "Backgrounding strategy effects on farm productivity, profitability and greenhouse gas emissions of cow-calf systems in the Flooding Pampas of Argentina," Agricultural Systems, Elsevier, vol. 176(C).
    8. Greiner, Romy & Miller, Owen & Patterson, Louisa, 2008. "The role of grazier motivations and risk attitudes in the adoption of grazing best management practices," 2008 Conference (52nd), February 5-8, 2008, Canberra, Australia 6002, Australian Agricultural and Resource Economics Society.
    9. David J. Pannell, 1991. "Pests and pesticides, risk and risk aversion," Agricultural Economics, International Association of Agricultural Economists, vol. 5(4), pages 361-383, August.
    10. Senthold Asseng & David Pannell, 2013. "Adapting dryland agriculture to climate change: Farming implications and research and development needs in Western Australia," Climatic Change, Springer, vol. 118(2), pages 167-181, May.
    11. Rasmussen, Svend, 2003. "Criteria for optimal production under uncertainty. The state-contingent approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(4), pages 1-30.
    12. Caroline Roussy & Aude Ridier & Karim Chaïb, 2014. "Adoption d’innovations par les agriculteurs : rôle des perceptions et des préférences," Post-Print hal-01123427, HAL.
    13. Mitchell, Paul David, 1999. "The theory and practice of green insurance: insurance to encourage the adoption of corn rootworm IPM," ISU General Staff Papers 1999010108000013154, Iowa State University, Department of Economics.
    14. Wall, Charles A. & Fisher, Brian S., 1988. "Supply Response and the Theory of Production and Profit Functions," Review of Marketing and Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 56(03), pages 1-22, December.
    15. Babcock, Bruce A. & Shogren, Jason F., 1995. "The cost of agricultural production risk," Agricultural Economics, Blackwell, vol. 12(2), pages 141-150, August.
    16. D. J. Pannell, 1990. "Responses To Risk In Weed Control Decisions Under Expected Profit Maximisation," Journal of Agricultural Economics, Wiley Blackwell, vol. 41(3), pages 391-401, September.
    17. Marra, Michele C. & Carlson, Gerald A., 1985. "Models Of Technology Adoption Under Risk: Some Preliminary Results," Regional Research Projects > 1985: S-180 Annual Meeting, March 24-27, 1985, Charleston, South Carolina 271808, Regional Research Projects > S-180: An Economic Analysis of Risk Management Strategies for Agricultural Production Firms.
    18. Radha R. Ashrit, 2023. "Estimation of technical efficiency of Indian farms for major crops during 2013–2014 and 2017–2018: a stochastic Frontier production approach," SN Business & Economics, Springer, vol. 3(2), pages 1-32, February.
    19. Jean‐Paul Chavas & Giorgia Rivieccio & Salvatore Di Falco & Giovanni De Luca & Fabian Capitanio, 2022. "Agricultural diversification, productivity, and food security across time and space," Agricultural Economics, International Association of Agricultural Economists, vol. 53(S1), pages 41-58, November.
    20. Kehkha, Ahmad Ali & Mohammadi, Gholamreza Soltani & Villano, Renato A., 2005. "Agricultural Risk Analysis in the Fars Province of Iran: A Risk-Programming Approach," Working Papers 12897, University of New England, School of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:115:y:2013:i:c:p:10-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.