Advanced Search
MyIDEAS: Login to save this article or follow this journal

An integrated assessment of business risk for pasture-based dairy farm systems intensification

Contents:

Author Info

  • Fariña, S.R.
  • Alford, A.
  • Garcia, S.C.
  • Fulkerson, W.J.
Registered author(s):

    Abstract

    The increasing cost/price pressures on Australian dairy farmers mean that they will need to increase on-farm productivity by producing more milk per ha from home-grown forage. Since there is a limit to the potential yield from pasture an innovative intensification system that integrates pasture and forage crops has been developed. This complementary forages system (CFS) has shown to increase milk production per ha from home-grown forage beyond pasture potential. An integrated modelling approach was used to assess the business risk of this system and compare it to a system with increased use of concentrates, the pasture plus grain (PG) system and to the initial situation, the Base system. First, based on the results of a 2-year CFS farmlet study, the systems’ milk production, forage and supplements consumption were simulated for a 140ha farm using a decision support model. Second, the systems’ operating profit was calculated using a whole-farm budgeting approach. Third, the effect of inter-annual variation in key variables related to operating profit was assessed using a stochastic budgeting technique to calculate cumulative probability of profit as a measure of business risk. The selected variables were: price of milk, concentrates, urea fertiliser and irrigation water and yields of pasture and forage crops. The inter-annual variability of these yields was simulated for 100years of daily weather data assuming limited irrigation using validated biophysical simulation models. The sum of the forage crops yields had a lower inter-annual variability than pasture yields, which were more closely associated to annual rainfall. This lower variability was due to the high water use efficiency of maize, prioritized in the irrigation. The risk analysis showed that milk price was the variable with the highest impact on operating profit followed by forage yields, whereas urea fertiliser had the lowest effect. When integrating all variables, PG showed the highest business risk, followed by Base and CFS, respectively. Very high standards were assumed for the management of forage crops, pastures and feeding and therefore these results may not apply to all dairy farmers. However, this integrative systems analysis approach highlighted the potential of intensification alternatives with a diversified home-grown forage base to reduce business risk compared to systems based on only pasture and increased use of concentrates.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X1200159X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Agricultural Systems.

    Volume (Year): 115 (2013)
    Issue (Month): C ()
    Pages: 10-20

    as in new window
    Handle: RePEc:eee:agisys:v:115:y:2013:i:c:p:10-20

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/agsy

    Related research

    Keywords: Business risk; Pasture; Dairy systems; Forages; Simulation modelling; Milk production;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:115:y:2013:i:c:p:10-20. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.