IDEAS home Printed from https://ideas.repec.org/a/caa/jnlswr/v18y2023i2id132-2022-swr.html
   My bibliography  Save this article

Measuring of infiltration rate in different types of soil in the Czech Republic using a rainfall simulator

Author

Listed:
  • David Kabelka

    (Department of Pedology and Soil Conservation, Research Institute for Soil and Water Conservation, Prague-Zbraslav, Czech Republic)

  • David Kincl

    (Department of Pedology and Soil Conservation, Research Institute for Soil and Water Conservation, Prague-Zbraslav, Czech Republic
    Department of Landscape and Urban Planning, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic)

  • Jan Vopravil

    (Department of Pedology and Soil Conservation, Research Institute for Soil and Water Conservation, Prague-Zbraslav, Czech Republic
    Department of Landscape and Urban Planning, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic)

  • Jiří Brychta

    (Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic)

  • Jan Bačovský

    (Department of Landscape and Urban Planning, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic)

Abstract

Knowledge of the issue of water movement in the soil is the basis for agricultural activity, but also for many other sectors. One of the basic indicators that is evaluated in soil science is the rate of water infiltration into the soil. The article specifically states how soil texture and soil moisture affect the rate of water infiltration. The results show that changes in water infiltration can be significant and certain trends can be traced. The rate of water infiltration into the soil is most affected by the sand fraction (soil particles 0.05-2 mm). The higher the percentage of these soil particles in the soil, the lower the changes in infiltration rate depending on the degree of saturation. The article further evaluates soil moisture in relation to texture. The results were obtained at several research locations within the period 2014-2021 in the territory of the Czech Republic. The above findings are primarily applicable to the region of Central Europe or can be used as comparative values for regions in the rest of the world.

Suggested Citation

  • David Kabelka & David Kincl & Jan Vopravil & Jiří Brychta & Jan Bačovský, 2023. "Measuring of infiltration rate in different types of soil in the Czech Republic using a rainfall simulator," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 18(2), pages 128-137.
  • Handle: RePEc:caa:jnlswr:v:18:y:2023:i:2:id:132-2022-swr
    DOI: 10.17221/132/2022-SWR
    as

    Download full text from publisher

    File URL: http://swr.agriculturejournals.cz/doi/10.17221/132/2022-SWR.html
    Download Restriction: free of charge

    File URL: http://swr.agriculturejournals.cz/doi/10.17221/132/2022-SWR.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/132/2022-SWR?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seung-Ki Min & Xuebin Zhang & Francis W. Zwiers & Gabriele C. Hegerl, 2011. "Human contribution to more-intense precipitation extremes," Nature, Nature, vol. 470(7334), pages 378-381, February.
    2. Youngs, E. G., 1976. "Determination of the variation of hydraulic conductivity with depth in drained lands and the design of drainage installations," Agricultural Water Management, Elsevier, vol. 1(1), pages 57-66, December.
    3. S. Matula & M. Miháliková & J. Lufinková & K. Báťková, 2015. "The role of the initial soil water content in the determination of unsaturated soil hydraulic conductivity using a tension infiltrometer," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 61(11), pages 515-521.
    4. David Kabelka & David Kincl & Miloslav Janeček & Jan Vopravil & Petr Vráblík, 2019. "Reduction in soil organic matter loss caused by water erosion in inter-rows of hop gardens," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 14(3), pages 172-182.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davor Kvočka & Roger A. Falconer & Michaela Bray, 2016. "Flood hazard assessment for extreme flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1569-1599, December.
    2. Ikefuji, Masako & Horii, Ryo, 2012. "Natural disasters in a two-sector model of endogenous growth," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 784-796.
    3. Rei Itsukushima & Yohei Ogahara & Yuki Iwanaga & Tatsuro Sato, 2018. "Investigating the Influence of Various Stormwater Runoff Control Facilities on Runoff Control Efficiency in a Small Catchment Area," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    4. Yaolong Liu & Guorui Feng & Ye Xue & Huaming Zhang & Ruoguang Wang, 2015. "Small-scale natural disaster risk scenario analysis: a case study from the town of Shuitou, Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2167-2183, February.
    5. Islam, Moinul & Kotani, Koji & Managi, Shunsuke, 2016. "Climate perception and flood mitigation cooperation: A Bangladesh case study," Economic Analysis and Policy, Elsevier, vol. 49(C), pages 117-133.
    6. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    7. Jascha Lehmann & Dim Coumou & Katja Frieler, 2015. "Increased record-breaking precipitation events under global warming," Climatic Change, Springer, vol. 132(4), pages 501-515, October.
    8. Fabian Barthel & Eric Neumayer, 2012. "A trend analysis of normalized insured damage from natural disasters," Climatic Change, Springer, vol. 113(2), pages 215-237, July.
    9. Patrick Willems, 2013. "Multidecadal oscillatory behaviour of rainfall extremes in Europe," Climatic Change, Springer, vol. 120(4), pages 931-944, October.
    10. Brennan, Timothy J., 2011. "Energy Efficiency Policy: Surveying the Puzzles," RFF Working Paper Series dp-11-27, Resources for the Future.
    11. -, 2018. "Climate Change in Central America: Potential Impacts and Public Policy Options," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39150, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    12. Peng Jiang & Zhongbo Yu & Mahesh R. Gautam & Kumud Acharya, 2016. "The Spatiotemporal Characteristics of Extreme Precipitation Events in the Western United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4807-4821, October.
    13. Qiang Zhang & Jianfeng Li & Vijay Singh & Yungang Bai, 2012. "SPI-based evaluation of drought events in Xinjiang, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 481-492, October.
    14. János Mika, 2013. "Changes in weather and climate extremes: phenomenology and empirical approaches," Climatic Change, Springer, vol. 121(1), pages 15-26, November.
    15. Thomas, Vinod & Albert, Jose Ramon G. & Perez, Rosa T., 2012. "Examination of Intense Climate-related Disasters in the Asia-Pacific," Discussion Papers DP 2012-16, Philippine Institute for Development Studies.
    16. Randrianarisoa, Laingo M. & Zhang, Anming, 2019. "Adaptation to climate change effects and competition between ports: Invest now or later?," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 279-322.
    17. -, 2015. "The Economics of Climate Change in Central America: Summary 2012," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39089, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    18. May Haggag & Ahmad S. Siam & Wael El-Dakhakhni & Paulin Coulibaly & Elkafi Hassini, 2021. "A deep learning model for predicting climate-induced disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 1009-1034, May.
    19. Rodgers, M. & Mulqueen, J. & McHale, J., 2003. "A model study of mole drain spacing and performance," Agricultural Water Management, Elsevier, vol. 60(1), pages 33-42, April.
    20. Maria Silva Dias & Juliana Dias & Leila Carvalho & Edmilson Freitas & Pedro Silva Dias, 2013. "Changes in extreme daily rainfall for São Paulo, Brazil," Climatic Change, Springer, vol. 116(3), pages 705-722, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlswr:v:18:y:2023:i:2:id:132-2022-swr. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.