IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v56y2010i2id157-2009-pse.html
   My bibliography  Save this article

Growth and physiological performance responses to drought stress under non-flooded rice cultivation with straw mulching

Author

Listed:
  • J. Qin

    (Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P.R. China)

  • X. Wang

    (Nanjing Institute of Environment Science, MEP, Nanjing, P.R. China)

  • F. Hu

    (College of Resources and Environmental Sciences, Nanjing Agricultural University,)

  • H. Li

    (College of Resources and Environmental Sciences, Nanjing Agricultural University,)

Abstract

A field experiment was performed to investigate the growth performance and the growth stage-dependent changes in activities of antioxidative enzymes and concentration of malondialdehyde (MDA) in leaves of rice subjected to treatment with (NF-M) or without straw mulching (NF-WM) under non-flooded conditions compared with continuously flooded treatment (CF). Compared with the NF-WM treatment, mulch application significantly increased the flag leaf area per plant before heading, tillers number and plant height at the early period of tillering stage. There was no significant difference between the yield of the NF-WM and CF treatment. However, the yield of NF-WM treatment was significantly lower than CF and NF-M treatments. Significantly higher activities of peroxidase (POD) and catalase (CAT) but lower concentration of superoxide dismutase (SOD) and malondialdehyde (MDA) were observed in straw mulching treatment than in treatment without mulching at elongation, heading and grain filling stages. The change tendency of antioxidant enzyme activity and MDA level was in line both with soil moisture status and rice yields of different treatments.

Suggested Citation

  • J. Qin & X. Wang & F. Hu & H. Li, 2010. "Growth and physiological performance responses to drought stress under non-flooded rice cultivation with straw mulching," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 56(2), pages 51-59.
  • Handle: RePEc:caa:jnlpse:v:56:y:2010:i:2:id:157-2009-pse
    DOI: 10.17221/157/2009-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/157/2009-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/157/2009-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/157/2009-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cabangon, R. J. & Tuong, T. P. & Abdullah, N. B., 2002. "Comparing water input and water productivity of transplanted and direct-seeded rice production systems," Agricultural Water Management, Elsevier, vol. 57(1), pages 11-31, September.
    2. Qin, Jiangtao & Hu, Feng & Zhang, Bin & Wei, Zhenggui & Li, Huixin, 2006. "Role of straw mulching in non-continuously flooded rice cultivation," Agricultural Water Management, Elsevier, vol. 83(3), pages 252-260, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    2. Chao Zhang & Ruifa Hu, 2022. "Adoption of Direct Seeding, Yield and Fertilizer Use in Rice Production: Empirical Evidence from China," Agriculture, MDPI, vol. 12(9), pages 1-15, September.
    3. Lee, Teang Shui & Haque, M. Aminul & Najim, M.M.M., 2005. "Scheduling the cropping calendar in wet-seeded rice schemes in Malaysia," Agricultural Water Management, Elsevier, vol. 71(1), pages 71-84, January.
    4. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    5. Alberto, Ma. Carmelita R. & Quilty, James R. & Buresh, Roland J. & Wassmann, Reiner & Haidar, Sam & Correa, Teodoro Q. & Sandro, Joseph M., 2014. "Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 1-12.
    6. Chapagain, A.K. & Hoekstra, A.Y., 2011. "The blue, green and grey water footprint of rice from production and consumption perspectives," Ecological Economics, Elsevier, vol. 70(4), pages 749-758, February.
    7. M L Jat & Yadvinder Singh & M L Jat & MK Gathala & YS Saharawat & JK Ladha & YS Saharawat, 2019. "Conservation Agriculture in Intensive Rice-Wheat Rotation of Western Indo-Gangetic Plains-Effect on Crop Physiology, Yield, Water Productivity and Economic Profitability," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 18(3), pages 88-102, April.
    8. Jalota, S.K. & Singh, K.B. & Chahal, G.B.S. & Gupta, R.K. & Chakraborty, Somsubhra & Sood, Anil & Ray, S.S. & Panigrahy, S., 2009. "Integrated effect of transplanting date, cultivar and irrigation on yield, water saving and water productivity of rice (Oryza sativa L.) in Indian Punjab: Field and simulation study," Agricultural Water Management, Elsevier, vol. 96(7), pages 1096-1104, July.
    9. Bouman, Bas A. M. & Barker, Randolph & Humphreys, E. & Tuong, T. P. & Atlin, G. & Bennett, John & Dawe, D. & Dittert, K. & Dobermann, A. & Facon, Thierry & Fujimoto, N. & Gupta, R. & Haefele, S. & Hos, 2007. "Rice: feeding the billions," Book Chapters,, International Water Management Institute.
      • Bouman, B. & Barker, R. & Humphreys, E. & Tuong, T. P. & Atlin, G. & Bennett, J. & Dawe, D. & Dittert, K. & Dobermann, A. & Facon, T. & Fujimoto, N. & Gupta, R. & Haefele, S. & Hosen, Y. & Ismail, A. , 2007. "Rice: feeding the billions," IWMI Books, Reports H040206, International Water Management Institute.
    10. Mi, Wenhai & Sun, Yan & Zhao, Cai & Wu, Lianghuan, 2019. "Soil organic carbon and its labile fractions in paddy soil as influenced by water regimes and straw management," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    11. Monaco, Federica & Sali, Guido, 2018. "How water amounts and management options drive Irrigation Water Productivity of rice. A multivariate analysis based on field experiment data," Agricultural Water Management, Elsevier, vol. 195(C), pages 47-57.
    12. Erenstein, Olaf & Malik, R.K. & Singh, Sher, 2007. "Adoption and Impacts of Zero-Tillage in the Rice-Wheat Zone of Irrigated Haryana, India," Impact Studies 56092, CIMMYT: International Maize and Wheat Improvement Center.
    13. Borgia, Cecilia & García-Bolaños, Mariana & Li, Tao & Gómez-Macpherson, Helena & Comas, Jordi & Connor, David & Mateos, Luciano, 2013. "Benchmarking for performance assessment of small and large irrigation schemes along the Senegal Valley in Mauritania," Agricultural Water Management, Elsevier, vol. 121(C), pages 19-26.
    14. Singh, Samar Pal & Mahapatra, B.S. & Pramanick, Biswajit & Yadav, Vimal Raj, 2021. "Effect of irrigation levels, planting methods and mulching on nutrient uptake, yield, quality, water and fertilizer productivity of field mustard (Brassica rapa L.) under sandy loam soil," Agricultural Water Management, Elsevier, vol. 244(C).
    15. Kaur, Baljinder, 2011. "Impact of Climate Change and Cropping Pattern on Ground Water Resources of Punjab," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 66(3), pages 1-15.
    16. Bouman, B. A.M., 2007. "A conceptual framework for the improvement of crop water productivity at different spatial scales," Agricultural Systems, Elsevier, vol. 93(1-3), pages 43-60, March.
    17. Anjali Chaudhary & V. Venkatramanan & Ajay Kumar Mishra & Sheetal Sharma, 2023. "Agronomic and Environmental Determinants of Direct Seeded Rice in South Asia," Circular Economy and Sustainability,, Springer.
    18. Li, Yong & Šimůnek, Jirka & Jing, Longfei & Zhang, Zhentin & Ni, Lixiao, 2014. "Evaluation of water movement and water losses in a direct-seeded-rice field experiment using Hydrus-1D," Agricultural Water Management, Elsevier, vol. 142(C), pages 38-46.
    19. Alauddin, Mohammad & Rashid Sarker, Md. Abdur & Islam, Zeenatul & Tisdell, Clement, 2020. "Adoption of alternate wetting and drying (AWD) irrigation as a water-saving technology in Bangladesh: Economic and environmental considerations," Land Use Policy, Elsevier, vol. 91(C).
    20. Jiao, Jiaguo & Shi, Kun & Li, Peng & Sun, Zhen & Chang, Dali & Shen, Xueshan & Wu, Di & Song, Xiuchao & Liu, Manqiang & Li, Huixin & Hu, Feng & Xu, Li, 2018. "Assessing of an irrigation and fertilization practice for improving rice production in the Taihu Lake region (China)," Agricultural Water Management, Elsevier, vol. 201(C), pages 91-98.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:56:y:2010:i:2:id:157-2009-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.