IDEAS home Printed from https://ideas.repec.org/a/bpj/jecome/v6y2017i1p15n7.html
   My bibliography  Save this article

Teaching Size and Power Properties of Hypothesis Tests Through Simulations

Author

Listed:
  • Taşpınar Süleyman

    (Economics Program, Queens College, The City University of New York, USA)

  • Doğan Osman

    (Istanbul Ulasim A.S., Project Department, Istanbul, Turkey)

Abstract

In this study, we review the graphical methods suggested in Davidson and MacKinnon (Davidson, Russell, and James G. MacKinnon. 1998. “Graphical Methods for Investigating the Size and Power of Hypothesis Tests.” The Manchester School 66 (1): 1–26.) that can be used to investigate size and power properties of hypothesis tests for undergraduate and graduate econometrics courses. These methods can be used to assess finite sample properties of various hypothesis tests through simulation studies. In addition, these methods can be effectively used in classrooms to reinforce students’ understanding of basic hypothesis testing concepts such as Type I error, Type II error, size, power, p-values and under-or-over-sized tests. We illustrate the procedural aspects of these graphical methods through Monte Carlo experiments, and provide the implementation codes written in Matlab and R for the classroom applications.

Suggested Citation

  • Taşpınar Süleyman & Doğan Osman, 2017. "Teaching Size and Power Properties of Hypothesis Tests Through Simulations," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-15, January.
  • Handle: RePEc:bpj:jecome:v:6:y:2017:i:1:p:15:n:7
    DOI: 10.1515/jem-2015-0014
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jem-2015-0014
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jem-2015-0014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davidson, Russell & MacKinnon, James G, 1998. "Graphical Methods for Investigating the Size and Power of Hypothesis Tests," The Manchester School of Economic & Social Studies, University of Manchester, vol. 66(1), pages 1-26, January.
    2. Dougherty, Christopher, 2011. "Introduction to Econometrics," OUP Catalogue, Oxford University Press, edition 4, number 9780199567089.
    3. Hendry, David F., 1984. "Monte carlo experimentation in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 16, pages 937-976, Elsevier.
    4. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    5. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    6. A. I. McLeod & W. K. Li, 1983. "Diagnostic Checking Arma Time Series Models Using Squared‐Residual Autocorrelations," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 269-273, July.
    7. Alexander Shapiro & Jos Berge, 2002. "Statistical inference of minimum rank factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 79-94, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catani, P.S. & Ahlgren, N.J.C., 2017. "Combined Lagrange multiplier test for ARCH in vector autoregressive models," Econometrics and Statistics, Elsevier, vol. 1(C), pages 62-84.
    2. Duchesne, Pierre, 2006. "Testing for multivariate autoregressive conditional heteroskedasticity using wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2142-2163, December.
    3. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    4. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Working Papers 0501, University of Crete, Department of Economics.
    5. Baur, Dirk & Jung, Robert C., 2006. "Return and volatility linkages between the US and the German stock market," Journal of International Money and Finance, Elsevier, vol. 25(4), pages 598-613, June.
    6. Theodore Panagiotidis, 2010. "Market efficiency and the Euro: the case of the Athens stock exchange," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 37(3), pages 237-251, July.
    7. Tiwari, Aviral Kumar & Aye, Goodness C. & Gupta, Rangan & Gkillas, Konstantinos, 2020. "Gold-oil dependence dynamics and the role of geopolitical risks: Evidence from a Markov-switching time-varying copula model," Energy Economics, Elsevier, vol. 88(C).
    8. Theodore Panagiotidis, 2002. "Testing the assumption of Linearity," Economics Bulletin, AccessEcon, vol. 3(29), pages 1-9.
    9. David Vidal-Tomás & Simone Alfarano, 2020. "An agent-based early warning indicator for financial market instability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 49-87, January.
    10. Bock, David & Pettersson, Kjell, 2007. "Explorative analysis of spatial aspects on the Swedish influenza data," Research Reports 2007:10, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    11. Hamilton, James D., 1996. "Specification testing in Markov-switching time-series models," Journal of Econometrics, Elsevier, vol. 70(1), pages 127-157, January.
    12. Urquhart, Andrew & Hudson, Robert, 2013. "Efficient or adaptive markets? Evidence from major stock markets using very long run historic data," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 130-142.
    13. Semei Coronado-Ram'irez & Pedro Celso-Arellano & Omar Rojas, 2014. "Adaptive Market Efficiency of Agricultural Commodity Futures Contracts," Papers 1412.8017, arXiv.org, revised Mar 2015.
    14. Isao Ishida & Toshiaki Watanabe, 2009. "Modeling and Forecasting the Volatility of the Nikkei 225 Realized Volatility Using the ARFIMA-GARCH Model," CARF F-Series CARF-F-145, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    15. Mauro Costantini & Claudio Lupi, 2013. "A Simple Panel-CADF Test for Unit Roots," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(2), pages 276-296, April.
    16. Aloui, Chaker & Hammoudeh, Shawkat & Hamida, Hela ben, 2015. "Global factors driving structural changes in the co-movement between sharia stocks and sukuk in the Gulf Cooperation Council countries," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 311-329.
    17. Chen, Yi-Ting & Chou, Ray Y. & Kuan, Chung-Ming, 2000. "Testing time reversibility without moment restrictions," Journal of Econometrics, Elsevier, vol. 95(1), pages 199-218, March.
    18. Pan, Ming-Shiun & Chan, Kam C. & Fok, Chi-Wing, 1995. "The distribution of currency futures price changes: A two-piece mixture of normals approach," International Review of Economics & Finance, Elsevier, vol. 4(1), pages 69-78.
    19. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723.
    20. B.P.M. McCabe & G.M. Martin & R.K. Freeland, 2004. "Testing for Dependence in Non-Gaussian Time Series Data," Monash Econometrics and Business Statistics Working Papers 13/04, Monash University, Department of Econometrics and Business Statistics.

    More about this item

    Keywords

    hypothesis tests; P value discrepancy plots; P value plots; power; size; size-power curves;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jecome:v:6:y:2017:i:1:p:15:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.