IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v8y2019i4ne338.html
   My bibliography  Save this article

Competitive cross‐voltage level procurement of reactive power considering reliable capacity from wind and photovoltaics

Author

Listed:
  • Erika Kaempf
  • Bernhard Ernst
  • Martin Braun

Abstract

Transition toward high shares of power production from wind and photovoltaics (PV) brings about a substantial increase in controllable reactive power (Q). The capability to provide Q independent of active power production (24/7) is available at comparably low or even zero investment cost. Yet, this capability is not required by network connection codes and only rarely utilized, even if available. In a first step, we take an overall economic perspective and review the economic competition of 24/7 Q provision from variable renewable power plants (VRPP) with alternative Q resources. Technical restrictions to be respected are discussed, as well as the reliability requirements related to investment‐planning relevant Q provision. Competitiveness is significantly influenced by Q utilization rate and connecting voltage level. For practical implementation of 24/7 Q procurement from VRPP, its value needs to be assessed. We review possible approaches from overall economic perspective. We conclude that in operational decisions, VRPP Q should be valued at marginal cost, whereas in Q investment planning decisions, full cost should be considered. We derive the pros and cons of making 24/7 Q provision a mandatory part of network connection codes. For system operators (SOs) to integrate available capacity, regulatory acknowledgment of related revenue impact should be considered. We present possible solutions. Summarizing, the contribution presents the status quo in research on cross‐voltage level, investment‐relevant Q provision by VRPP. Using the presented methodology for value assessment, areas for further research are systematically pointed out. This article is categorized under: Wind Power > Systems and Infrastructure Energy Policy and Planning > Economics and Policy Photovoltaics > Economics and Policy

Suggested Citation

  • Erika Kaempf & Bernhard Ernst & Martin Braun, 2019. "Competitive cross‐voltage level procurement of reactive power considering reliable capacity from wind and photovoltaics," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(4), July.
  • Handle: RePEc:bla:wireae:v:8:y:2019:i:4:n:e338
    DOI: 10.1002/wene.338
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.338
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.338?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Hasanuzzaman & Ummu Salamah Zubir & Nur Iqtiyani Ilham & Hang Seng Che, 2017. "Global electricity demand, generation, grid system, and renewable energy polices: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(3), May.
    2. Hannele Holttinen, 2012. "Wind integration: experience, issues, and challenges," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 1(3), pages 243-255, November.
    3. J. Charles Smith & Dale Osborn & Robert Zavadil & Warren Lasher & Emilio Gómez‐Lázaro & Ana Estanqueiro & Thomas Trotscher & John Tande & Magnus Korpås & Frans Van Hulle & Hannele Holttinen & Antje Or, 2013. "Transmission planning for wind energy in the United States and Europe: status and prospects," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 1-13, January.
    4. Wang, Jianxiao & Zhong, Haiwang & Tang, Wenyuan & Rajagopal, Ram & Xia, Qing & Kang, Chongqing & Wang, Yi, 2017. "Optimal bidding strategy for microgrids in joint energy and ancillary service markets considering flexible ramping products," Applied Energy, Elsevier, vol. 205(C), pages 294-303.
    5. Karl Anton Zach & Hans Auer, 2016. "Contribution of bulk energy storage to integrating variable renewable energies in future European electricity systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(4), pages 451-469, July.
    6. Jenny Riesz & Michael Milligan, 2015. "Designing electricity markets for a high penetration of variable renewables," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(3), pages 279-289, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behnam Zakeri & Samuli Rinne & Sanna Syri, 2015. "Wind Integration into Energy Systems with a High Share of Nuclear Power—What Are the Compromises?," Energies, MDPI, vol. 8(4), pages 1-35, March.
    2. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    3. Salpakari, Jyri & Lund, Peter, 2016. "Optimal and rule-based control strategies for energy flexibility in buildings with PV," Applied Energy, Elsevier, vol. 161(C), pages 425-436.
    4. Jon Martinez-Rico & Ekaitz Zulueta & Unai Fernandez-Gamiz & Ismael Ruiz de Argandoña & Mikel Armendia, 2020. "Forecast Error Sensitivity Analysis for Bidding in Electricity Markets with a Hybrid Renewable Plant Using a Battery Energy Storage System," Sustainability, MDPI, vol. 12(9), pages 1-18, April.
    5. Wang, Yubin & Zheng, Yanchong & Yang, Qiang, 2023. "Day-ahead bidding strategy of regional integrated energy systems considering multiple uncertainties in electricity markets," Applied Energy, Elsevier, vol. 348(C).
    6. Hugo Algarvio & Fernando Lopes & António Couto & Ana Estanqueiro, 2019. "Participation of wind power producers in day‐ahead and balancing markets: An overview and a simulation‐based study," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    7. Keck, Felix & Lenzen, Manfred & Vassallo, Anthony & Li, Mengyu, 2019. "The impact of battery energy storage for renewable energy power grids in Australia," Energy, Elsevier, vol. 173(C), pages 647-657.
    8. Asier Zulueta & Decebal Aitor Ispas-Gil & Ekaitz Zulueta & Joseba Garcia-Ortega & Unai Fernandez-Gamiz, 2022. "Battery Sizing Optimization in Power Smoothing Applications," Energies, MDPI, vol. 15(3), pages 1-20, January.
    9. Fernando J. Lanas & Francisco J. Martínez-Conde & Diego Alvarado & Rodrigo Moreno & Patricio Mendoza-Araya & Guillermo Jiménez-Estévez, 2020. "Non-Strategic Capacity Withholding from Distributed Energy Storage within Microgrids Providing Energy and Reserve Services," Energies, MDPI, vol. 13(19), pages 1-14, October.
    10. Ren, Simiao & Hu, Wayne & Bradbury, Kyle & Harrison-Atlas, Dylan & Malaguzzi Valeri, Laura & Murray, Brian & Malof, Jordan M., 2022. "Automated Extraction of Energy Systems Information from Remotely Sensed Data: A Review and Analysis," Applied Energy, Elsevier, vol. 326(C).
    11. Chen, Boyu & Che, Yanbo & Zheng, Zhihao & Zhao, Shuaijun, 2023. "Multi-objective robust optimal bidding strategy for a data center operator based on bi-level optimization," Energy, Elsevier, vol. 269(C).
    12. Hou, Lingxi & Li, Weiqi & Zhou, Kui & Jiang, Qirong, 2019. "Integrating flexible demand response toward available transfer capability enhancement," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Contract durations in the electricity market: Causal impact of 15min trading on the EPEX SPOT market," Energy Economics, Elsevier, vol. 69(C), pages 367-378.
    14. Ricardo Bessa & Carlos Moreira & Bernardo Silva & Manuel Matos, 2014. "Handling renewable energy variability and uncertainty in power systems operation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(2), pages 156-178, March.
    15. Tang, Hong & Wang, Shengwei, 2022. "A model-based predictive dispatch strategy for unlocking and optimizing the building energy flexibilities of multiple resources in electricity markets of multiple services," Applied Energy, Elsevier, vol. 305(C).
    16. Hong, Bowen & Zhang, Weitong & Zhou, Yue & Chen, Jian & Xiang, Yue & Mu, Yunfei, 2018. "Energy-Internet-oriented microgrid energy management system architecture and its application in China," Applied Energy, Elsevier, vol. 228(C), pages 2153-2164.
    17. Silveira, Jose Ronaldo & Brandao, Danilo Iglesias & Fernandes, Nicolas T.D. & Uturbey, Wadaed & Cardoso, Braz, 2021. "Multifunctional dispatchable microgrids," Applied Energy, Elsevier, vol. 282(PA).
    18. Nelson, James R. & Johnson, Nathan G., 2020. "Model predictive control of microgrids for real-time ancillary service market participation," Applied Energy, Elsevier, vol. 269(C).
    19. Cong Liu & Jingyang Zhou & Yi Pan & Zhiyi Li & Yifei Wang & Dan Xu & Qiang Ding & Zhiqiang Luo & Mohammad Shahidehpour, 2019. "Multi-period Market Operation of Transmission-Distribution Systems Based on Heterogeneous Decomposition and Coordination," Energies, MDPI, vol. 12(16), pages 1-20, August.
    20. Thomas Pownall & Iain Soutar & Catherine Mitchell, 2021. "Re-Designing GB’s Electricity Market Design: A Conceptual Framework Which Recognises the Value of Distributed Energy Resources," Energies, MDPI, vol. 14(4), pages 1-26, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:8:y:2019:i:4:n:e338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.