IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v41y2014i2p277-290.html
   My bibliography  Save this article

How to Select Representative Samples

Author

Listed:
  • Anton Grafström
  • Lina Schelin

Abstract

type="main" xml:id="sjos12016-abs-0001"> We give a formal definition of a representative sample, but roughly speaking, it is a scaled-down version of the population, capturing its characteristics. New methods for selecting representative probability samples in the presence of auxiliary variables are introduced. Representative samples are needed for multipurpose surveys, when several target variables are of interest. Such samples also enable estimation of parameters in subspaces and improved estimation of target variable distributions. We describe how two recently proposed sampling designs can be used to produce representative samples. Both designs use distance between population units when producing a sample. We propose a distance function that can calculate distances between units in general auxiliary spaces. We also propose a variance estimator for the commonly used Horvitz–Thompson estimator. Real data as well as illustrative examples show that representative samples are obtained and that the variance of the Horvitz–Thompson estimator is reduced compared with simple random sampling.

Suggested Citation

  • Anton Grafström & Lina Schelin, 2014. "How to Select Representative Samples," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 277-290, June.
  • Handle: RePEc:bla:scjsta:v:41:y:2014:i:2:p:277-290
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12016
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dubin, Robin A., 1992. "Spatial autocorrelation and neighborhood quality," Regional Science and Urban Economics, Elsevier, vol. 22(3), pages 433-452, September.
    2. Jean-Claude Deville & Yves Tille, 2004. "Efficient balanced sampling: The cube method," Biometrika, Biometrika Trust, vol. 91(4), pages 893-912, December.
    3. Stevens, Don L. & Olsen, Anthony R., 2004. "Spatially Balanced Sampling of Natural Resources," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 262-278, January.
    4. Lennart Bondesson & Daniel Thorburn, 2008. "A List Sequential Sampling Method Suitable for Real‐Time Sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 466-483, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Burak Eldem & Aldona Kluczek & Jan Bagiński, 2022. "The COVID-19 Impact on Supply Chain Operations of Automotive Industry: A Case Study of Sustainability 4.0 Based on Sense–Adapt–Transform Framework," Sustainability, MDPI, vol. 14(10), pages 1-32, May.
    2. Egor Krivosheya & Polina Belyakova, 2019. "Financial innovations role in consumer behavior at Russian retail payments market," Proceedings of Economics and Finance Conferences 9511955, International Institute of Social and Economic Sciences.
    3. Anastasios Evgenidis & Apostolos Fasianos, 2021. "Unconventional Monetary Policy and Wealth Inequalities in Great Britain," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(1), pages 115-175, February.
    4. Katherine von Stackelberg & Pamela R.D. Williams & Ernesto Sánchez-Triana, 2021. "A Systematic Framework for Collecting Site-Specific Sampling and Survey Data to Support Analyses of Health Impacts from Land-Based Pollution in Low- and Middle-Income Countries," IJERPH, MDPI, vol. 18(9), pages 1-24, April.
    5. Raphaël Jauslin & Yves Tillé, 2020. "Spatial Spread Sampling Using Weakly Associated Vectors," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 431-451, September.
    6. Juan Manuel Pérez-Salamero González & Marta Regúlez-Castillo & Carlos Vidal-Meliá, 2017. "The continuous sample of working lives: improving its representativeness," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 8(1), pages 43-95, March.
    7. Krivosheya, Egor, 2020. "The role of financial innovations in consumer behavior in the Russian retail payments market," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    8. Zhonglei Wang & Zhengyuan Zhu, 2019. "Spatiotemporal Balanced Sampling Design for Longitudinal Area Surveys," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 245-263, June.
    9. Jesús Henares-Montiel & Vivian Benítez-Hidalgo & Isabel Ruiz-Pérez & Guadalupe Pastor-Moreno & Miguel Rodríguez-Barranco, 2022. "Cyberbullying and Associated Factors in Member Countries of the European Union: A Systematic Review and Meta-Analysis of Studies with Representative Population Samples," IJERPH, MDPI, vol. 19(12), pages 1-13, June.
    10. Robertson, B.L. & Reale, M. & Price, C.J. & Brown, J.A., 2021. "Quasi-random ranked set sampling," Statistics & Probability Letters, Elsevier, vol. 171(C).
    11. Yves Tillé, 2022. "Some Solutions Inspired by Survey Sampling Theory to Build Effective Clinical Trials," International Statistical Review, International Statistical Institute, vol. 90(3), pages 481-498, December.
    12. B. L. Robertson & O. Ozturk & O. Kravchuk & J. A. Brown, 2022. "Spatially Balanced Sampling with Local Ranking," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 622-639, December.
    13. Omer Ozturk & Olena Kravchuk & Raymond Correll, 2022. "Row–Column Sampling Design Using Auxiliary Ranking Variables," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 652-673, December.
    14. Vicente Núñez-Antón & Juan Manuel Pérez-Salamero González & Marta Regúlez-Castillo & Carlos Vidal-Meliá, 2020. "Improving the Representativeness of a Simple Random Sample: An Optimization Model and Its Application to the Continuous Sample of Working Lives," Mathematics, MDPI, vol. 8(8), pages 1-27, July.
    15. Juan Manuel Pérez-Salamero González & Marta Regúlez-Castillo & Manuel Ventura-Marco & Carlos Vidal-Meliá, 2017. "Automatic regrouping of strata in the chi-square test," Documentos de Trabajo del ICAE 2017-24, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    16. Raphaël Jauslin & Bardia Panahbehagh & Yves Tillé, 2022. "Sequential spatially balanced sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    17. Xin Zhao & Anton Grafström, 2020. "A sample coordination method to monitor totals of environmental variables," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
    18. Xin Zhao & Anton Grafström, 2024. "Estimation of change with partially overlapping and spatially balanced samples," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Michela Dickson & Giuseppe Espa & Diego Giuliani, 2016. "Incomplete geocoding and spatial sampling: the effects of locational errors on population total estimation," DEM Working Papers 2016/04, Department of Economics and Management.
    2. Roberto Benedetti & Federica Piersimoni & Paolo Postiglione, 2017. "Spatially Balanced Sampling: A Review and A Reappraisal," International Statistical Review, International Statistical Institute, vol. 85(3), pages 439-454, December.
    3. Tomasz Bąk, 2021. "Spatial sampling methods modified by model use," Statistics in Transition New Series, Polish Statistical Association, vol. 22(2), pages 143-154, June.
    4. Raphaël Jauslin & Bardia Panahbehagh & Yves Tillé, 2022. "Sequential spatially balanced sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    5. Xin Zhao & Anton Grafström, 2020. "A sample coordination method to monitor totals of environmental variables," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
    6. Linda Altieri & Daniela Cocchi, 2021. "Spatial Sampling for Non‐compact Patterns," International Statistical Review, International Statistical Institute, vol. 89(3), pages 532-549, December.
    7. B. L. Robertson & J. A. Brown & T. McDonald & P. Jaksons, 2013. "BAS: Balanced Acceptance Sampling of Natural Resources," Biometrics, The International Biometric Society, vol. 69(3), pages 776-784, September.
    8. Maria Michela Dickson & Yves Tillé, 2016. "Ordered spatial sampling by means of the traveling salesman problem," Computational Statistics, Springer, vol. 31(4), pages 1359-1372, December.
    9. Guillaume Chauvet & Ronan Le Gleut, 2021. "Inference under pivotal sampling: Properties, variance estimation, and application to tesselation for spatial sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 108-131, March.
    10. Cindy L. Yu & Jie Li & Michael G. Karl & Todd J. Krueger, 2020. "Obtaining a Balanced Area Sample for the Bureau of Land Management Rangeland Survey," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 250-275, June.
    11. R. Benedetti & F. Piersimoni & P. Postiglione, 2017. "Alternative and complementary approaches to spatially balanced samples," METRON, Springer;Sapienza Università di Roma, vol. 75(3), pages 249-264, December.
    12. Yves Tillé, 2022. "Some Solutions Inspired by Survey Sampling Theory to Build Effective Clinical Trials," International Statistical Review, International Statistical Institute, vol. 90(3), pages 481-498, December.
    13. Raphaël Jauslin & Yves Tillé, 2020. "Spatial Spread Sampling Using Weakly Associated Vectors," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 431-451, September.
    14. ak Tomasz B, 2021. "Spatial sampling methods modified by model use," Statistics in Transition New Series, Polish Statistical Association, vol. 22(2), pages 143-154, June.
    15. Maria Michela Dickson & Giuseppe Espa & Diego Giuliani & Emanuele Taufer, 2016. "Metodi di campionamento spaziale per la selezione di campioni rappresentativi di imprese," RIVISTA DI ECONOMIA E STATISTICA DEL TERRITORIO, FrancoAngeli Editore, vol. 2016(3), pages 89-99.
    16. Bello Musa Zango & Sanni Mohammed Lekan & Mohammed Jibrin Katun, 2020. "Conventional Methods in Housing Market Analysis: A Review of Literature," Baltic Journal of Real Estate Economics and Construction Management, Sciendo, vol. 8(1), pages 227-241, January.
    17. S. Wong & C. Yiu & K. Chau, 2013. "Trading Volume-Induced Spatial Autocorrelation in Real Estate Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 46(4), pages 596-608, May.
    18. Lorenzo Fattorini & Timothy G. Gregoire & Sara Trentini, 2018. "The Use of Calibration Weighting for Variance Estimation Under Systematic Sampling: Applications to Forest Cover Assessment," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(3), pages 358-373, September.
    19. Matei Alina, 2021. "Book Review," Journal of Official Statistics, Sciendo, vol. 37(4), pages 1079-1081, December.
    20. Chica-Olmo, Jorge & Cano-Guervos, Rafael, 2020. "Does my house have a premium or discount in relation to my neighbors? A regression-kriging approach," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:41:y:2014:i:2:p:277-290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.