IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v31y2020i6ne2625.html
   My bibliography  Save this article

A sample coordination method to monitor totals of environmental variables

Author

Listed:
  • Xin Zhao
  • Anton Grafström

Abstract

A new sampling strategy for design‐based environmental monitoring is proposed. It has the potential to produce superior estimators for totals of environmental variables and their changes over time. In the strategy, we combine two concepts known as spatially balanced sampling and coordination of samples. Spatially balanced sampling can provide superior estimators of totals, while coordination of samples over time is often used to improve estimators of change. Compared with reference strategies, we show that the new strategy can improve the precision of the estimators of totals and their change simultaneously. A forest inventory application is used to illustrate the new strategy and the results can be summarized as (i) using auxiliary information to spread the sample can improve the estimators of totals; (ii) a positive coordination of the samples reduced the variance of the estimator of change by more than 37% compared with independent samples; and (iii) a high overlap between successive samples does not guarantee a good estimator of change. The presented strategy can be used to develop more efficient environmental monitoring programs.

Suggested Citation

  • Xin Zhao & Anton Grafström, 2020. "A sample coordination method to monitor totals of environmental variables," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
  • Handle: RePEc:wly:envmet:v:31:y:2020:i:6:n:e2625
    DOI: 10.1002/env.2625
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2625
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2625?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roberto Benedetti & Federica Piersimoni & Paolo Postiglione, 2015. "Sampling Spatial Units for Agricultural Surveys," Advances in Spatial Science, Springer, edition 127, number 978-3-662-46008-5, Fall.
    2. Anton Grafström & Lina Schelin, 2014. "How to Select Representative Samples," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 277-290, June.
    3. A. Grafström & S. Schnell & S. Saarela & S. P. Hubbell & R. Condit, 2017. "The continuous population approach to forest inventories and use of information in the design," Environmetrics, John Wiley & Sons, Ltd., vol. 28(8), December.
    4. Lennart Bondesson & Daniel Thorburn, 2008. "A List Sequential Sampling Method Suitable for Real‐Time Sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 466-483, September.
    5. Anton Grafström & Alina Matei, 2018. "Spatially Balanced Sampling of Continuous Populations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(3), pages 792-805, September.
    6. B. L. Robertson & J. A. Brown & T. McDonald & P. Jaksons, 2013. "BAS: Balanced Acceptance Sampling of Natural Resources," Biometrics, The International Biometric Society, vol. 69(3), pages 776-784, September.
    7. Mach, Lenka & Reiss, Philip T. & Schiopu-Kratina, Ioana, 2006. "Optimizing the Expected Overlap of Survey Samples via the Northwest Corner Rule," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1671-1679, December.
    8. Stevens, Don L. & Olsen, Anthony R., 2004. "Spatially Balanced Sampling of Natural Resources," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 262-278, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Zhao & Anton Grafström, 2024. "Estimation of change with partially overlapping and spatially balanced samples," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linda Altieri & Daniela Cocchi, 2021. "Spatial Sampling for Non‐compact Patterns," International Statistical Review, International Statistical Institute, vol. 89(3), pages 532-549, December.
    2. B. L. Robertson & O. Ozturk & O. Kravchuk & J. A. Brown, 2022. "Spatially Balanced Sampling with Local Ranking," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 622-639, December.
    3. Robertson, B.L. & Reale, M. & Price, C.J. & Brown, J.A., 2021. "Quasi-random ranked set sampling," Statistics & Probability Letters, Elsevier, vol. 171(C).
    4. Roberto Benedetti & Federica Piersimoni & Paolo Postiglione, 2017. "Spatially Balanced Sampling: A Review and A Reappraisal," International Statistical Review, International Statistical Institute, vol. 85(3), pages 439-454, December.
    5. Zhonglei Wang & Zhengyuan Zhu, 2019. "Spatiotemporal Balanced Sampling Design for Longitudinal Area Surveys," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 245-263, June.
    6. Raphaël Jauslin & Bardia Panahbehagh & Yves Tillé, 2022. "Sequential spatially balanced sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    7. Omer Ozturk & Olena Kravchuk & Raymond Correll, 2022. "Row–Column Sampling Design Using Auxiliary Ranking Variables," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 652-673, December.
    8. B. L. Robertson & J. A. Brown & T. McDonald & P. Jaksons, 2013. "BAS: Balanced Acceptance Sampling of Natural Resources," Biometrics, The International Biometric Society, vol. 69(3), pages 776-784, September.
    9. Robertson, B.L. & McDonald, T. & Price, C.J. & Brown, J.A., 2017. "A modification of balanced acceptance sampling," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 107-112.
    10. Xin Zhao & Anton Grafström, 2024. "Estimation of change with partially overlapping and spatially balanced samples," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    11. Guillaume Chauvet & Ronan Le Gleut, 2021. "Inference under pivotal sampling: Properties, variance estimation, and application to tesselation for spatial sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 108-131, March.
    12. Steen Magnussen & Johannes Breidenbach, 2020. "Retrieval of among-stand variances from one observation per stand," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 66(4), pages 133-149.
    13. R. Benedetti & F. Piersimoni & P. Postiglione, 2017. "Alternative and complementary approaches to spatially balanced samples," METRON, Springer;Sapienza Università di Roma, vol. 75(3), pages 249-264, December.
    14. Maria Michela Dickson & Giuseppe Espa & Diego Giuliani, 2016. "Incomplete geocoding and spatial sampling: the effects of locational errors on population total estimation," DEM Working Papers 2016/04, Department of Economics and Management.
    15. Yves Tillé, 2022. "Some Solutions Inspired by Survey Sampling Theory to Build Effective Clinical Trials," International Statistical Review, International Statistical Institute, vol. 90(3), pages 481-498, December.
    16. Raphaël Jauslin & Yves Tillé, 2020. "Spatial Spread Sampling Using Weakly Associated Vectors," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 431-451, September.
    17. Anton Grafström & Lina Schelin, 2014. "How to Select Representative Samples," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 277-290, June.
    18. Maria Michela Dickson & Giuseppe Espa & Diego Giuliani & Emanuele Taufer, 2016. "Metodi di campionamento spaziale per la selezione di campioni rappresentativi di imprese," RIVISTA DI ECONOMIA E STATISTICA DEL TERRITORIO, FrancoAngeli Editore, vol. 2016(3), pages 89-99.
    19. Tomasz Bąk, 2021. "Spatial sampling methods modified by model use," Statistics in Transition New Series, Polish Statistical Association, vol. 22(2), pages 143-154, June.
    20. Lorenzo Fattorini & Timothy G. Gregoire & Sara Trentini, 2018. "The Use of Calibration Weighting for Variance Estimation Under Systematic Sampling: Applications to Forest Cover Assessment," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(3), pages 358-373, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:31:y:2020:i:6:n:e2625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.