IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v31y2021i3p907-942.html
   My bibliography  Save this article

Simulating risk measures via asymptotic expansions for relative errors

Author

Listed:
  • Wei Jiang
  • Steven Kou

Abstract

Risk measures, such as value‐at‐risk and expected shortfall, are widely used in finance. With the necessary sample size being computed using asymptotic expansions for relative errors, we propose a general framework to simulate these risk measures for a wide class of dependent data. The asymptotic expansions are new even for independent and identical data. An extensive numerical study is conducted to compare the proposed algorithm against existing algorithms, showing that the new algorithm is easy to implement, fast and accurate, even at the 0.001 quantile level. Applications to the estimation of intra‐horizon risk and to a comparison of the relative errors of value‐at‐risk and expected shortfall are also given.

Suggested Citation

  • Wei Jiang & Steven Kou, 2021. "Simulating risk measures via asymptotic expansions for relative errors," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 907-942, July.
  • Handle: RePEc:bla:mathfi:v:31:y:2021:i:3:p:907-942
    DOI: 10.1111/mafi.12304
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12304
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nickos Papadatos, 1995. "Maximum variance of order statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(1), pages 185-193, January.
    2. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    3. Yamai, Yasuhiro & Yoshiba, Toshinao, 2002. "Comparative Analyses of Expected Shortfall and Value-at-Risk: Their Estimation Error, Decomposition, and Optimization," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 20(1), pages 87-121, January.
    4. Philip Heidelberger & Peter D. Welch, 1983. "Simulation Run Length Control in the Presence of an Initial Transient," Operations Research, INFORMS, vol. 31(6), pages 1109-1144, December.
    5. Yamai, Yasuhiro & Yoshiba, Toshinao, 2005. "Value-at-risk versus expected shortfall: A practical perspective," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 997-1015, April.
    6. Danielsson, Jon & Zhou, Chen, 2015. "Why risk is so hard to measure," LSE Research Online Documents on Economics 62002, London School of Economics and Political Science, LSE Library.
    7. Liming Feng & Vadim Linetsky, 2008. "Pricing Discretely Monitored Barrier Options And Defaultable Bonds In Lévy Process Models: A Fast Hilbert Transform Approach," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 337-384, July.
    8. P. Heidelberger & P. A. W. Lewis, 1984. "Quantile Estimation in Dependent Sequences," Operations Research, INFORMS, vol. 32(1), pages 185-209, February.
    9. An, Mark Yuying, 1998. "Logconcavity versus Logconvexity: A Complete Characterization," Journal of Economic Theory, Elsevier, vol. 80(2), pages 350-369, June.
    10. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Post-Print hal-00413729, HAL.
    11. Peter A. Forsyth & Kenneth R. Vetzal, 2017. "Dynamic mean variance asset allocation: Tests for robustness," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-37, June.
    12. Xing Jin & Michael C. Fu & Xiaoping Xiong, 2003. "Probabilistic Error Bounds for Simulation Quantile Estimators," Management Science, INFORMS, vol. 49(2), pages 230-246, February.
    13. Meitner Cadena & Marie Kratz, 2014. "An Extension of the Class of Regularly Varying Functions," Working Papers hal-01097780, HAL.
    14. O. Scaillet, 2004. "Nonparametric Estimation and Sensitivity Analysis of Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 115-129, January.
    15. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    16. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    17. Cadena, Meitner & Kratz, Marie, 2014. "An Extension of the Class of Regularly Varying Functions," ESSEC Working Papers WP1417, ESSEC Research Center, ESSEC Business School.
    18. Yoshihara, Ken-ichi, 1995. "The Bahadur representation of sample quantiles for sequences of strongly mixing random variables," Statistics & Probability Letters, Elsevier, vol. 24(4), pages 299-304, September.
    19. Song Xi Chen, 2008. "Nonparametric Estimation of Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 6(1), pages 87-107, Winter.
    20. Vali Asimit & Liang Peng & Ruodu Wang & Alex Yu, 2019. "An efficient approach to quantile capital allocation and sensitivity analysis," Mathematical Finance, Wiley Blackwell, vol. 29(4), pages 1131-1156, October.
    21. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
    22. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    23. Steven Kou & Xianhua Peng & Chris C. Heyde, 2013. "External Risk Measures and Basel Accords," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 393-417, August.
    24. Jean-Guy Simonato & Lars Stentoft, 2015. "Which pricing approach for options under GARCH with non-normal innovations?," CREATES Research Papers 2015-32, Department of Economics and Business Economics, Aarhus University.
    25. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2000. "Variance Reduction Techniques for Estimating Value-at-Risk," Management Science, INFORMS, vol. 46(10), pages 1349-1364, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020. "A cost-benefit analysis of capital requirements adjusted for model risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
    2. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    3. Kellner, Ralf & Rösch, Daniel, 2016. "Quantifying market risk with Value-at-Risk or Expected Shortfall? – Consequences for capital requirements and model risk," Journal of Economic Dynamics and Control, Elsevier, vol. 68(C), pages 45-63.
    4. Paul Embrechts & Alexander Schied & Ruodu Wang, 2018. "Robustness in the Optimization of Risk Measures," Papers 1809.09268, arXiv.org, revised Feb 2021.
    5. Hans Rau-Bredow, 2019. "Bigger Is Not Always Safer: A Critical Analysis of the Subadditivity Assumption for Coherent Risk Measures," Risks, MDPI, vol. 7(3), pages 1-18, August.
    6. Ruodu Wang & Yunran Wei, 2020. "Risk functionals with convex level sets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1337-1367, October.
    7. Bellini, Fabio & Fadina, Tolulope & Wang, Ruodu & Wei, Yunran, 2022. "Parametric measures of variability induced by risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 270-284.
    8. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    9. Daniel Bartl & Ludovic Tangpi, 2020. "Non-asymptotic convergence rates for the plug-in estimation of risk measures," Papers 2003.10479, arXiv.org, revised Oct 2022.
    10. Marcelo Brutti Righi & Fernanda Maria Muller & Marlon Ruoso Moresco, 2017. "On a robust risk measurement approach for capital determination errors minimization," Papers 1707.09829, arXiv.org, revised Oct 2020.
    11. Fabio Bellini & Tolulope Fadina & Ruodu Wang & Yunran Wei, 2020. "Parametric measures of variability induced by risk measures," Papers 2012.05219, arXiv.org, revised Apr 2022.
    12. Müller, Fernanda Maria & Santos, Samuel Solgon & Gössling, Thalles Weber & Righi, Marcelo Brutti, 2022. "Comparison of risk forecasts for cryptocurrencies: A focus on Range Value at Risk," Finance Research Letters, Elsevier, vol. 48(C).
    13. Semih Atakan & Kerem Bülbül & Nilay Noyan, 2017. "Minimizing value-at-risk in single-machine scheduling," Annals of Operations Research, Springer, vol. 248(1), pages 25-73, January.
    14. Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.
    15. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2020. "Risk quantification for commodity ETFs: Backtesting value-at-risk and expected shortfall," International Review of Financial Analysis, Elsevier, vol. 70(C).
    16. Jiarui Chu & Ludovic Tangpi, 2021. "Non-asymptotic estimation of risk measures using stochastic gradient Langevin dynamics," Papers 2111.12248, arXiv.org, revised Feb 2023.
    17. Pitera, Marcin & Schmidt, Thorsten, 2018. "Unbiased estimation of risk," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 133-145.
    18. Martin Herdegen & Cosimo Munari, 2023. "An elementary proof of the dual representation of Expected Shortfall," Papers 2306.14506, arXiv.org.
    19. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    20. Onur Babat & Juan C. Vera & Luis F. Zuluaga, 2021. "Computing near-optimal Value-at-Risk portfolios using Integer Programming techniques," Papers 2107.07339, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:31:y:2021:i:3:p:907-942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.