IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v49y2003i2p230-246.html
   My bibliography  Save this article

Probabilistic Error Bounds for Simulation Quantile Estimators

Author

Listed:
  • Xing Jin

    (Department of Mathematics, National University of Singapore, Singapore 117543)

  • Michael C. Fu

    (R. H. Smith School of Business, University of Maryland, College Park, Maryland 20742-1871)

  • Xiaoping Xiong

    (R. H. Smith School of Business, University of Maryland, College Park, Maryland 20742-1871)

Abstract

Quantile estimation has become increasingly important, particularly in the financial industry, where value at risk (VaR) has emerged as a standard measurement tool for controlling portfolio risk. In this paper, we analyze the probability that a simulation-based quantile estimator fails to lie in a prespecified neighborhood of the true quantile. First, we show that this error probability converges to zero exponentially fast with sample size for negatively dependent sampling. Then we consider stratified quantile estimators and show that the error probability for these estimators can be guaranteed to be 0 with sufficiently large, but finite, sample size. These estimators, however, require sample sizes that grow exponentially in the problem dimension. Numerical experiments on a simple VaR example illustrate the potential for variance reduction.

Suggested Citation

  • Xing Jin & Michael C. Fu & Xiaoping Xiong, 2003. "Probabilistic Error Bounds for Simulation Quantile Estimators," Management Science, INFORMS, vol. 49(2), pages 230-246, February.
  • Handle: RePEc:inm:ormnsc:v:49:y:2003:i:2:p:230-246
    DOI: 10.1287/mnsc.49.2.230.12743
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.49.2.230.12743
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.49.2.230.12743?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Athanassios N. Avramidis & James R. Wilson, 1998. "Correlation-Induction Techniques for Estimating Quantiles in Simulation Experiments," Operations Research, INFORMS, vol. 46(4), pages 574-591, August.
    2. Jason C. Hsu & Barry L. Nelson, 1990. "Control Variates for Quantile Estimation," Management Science, INFORMS, vol. 36(7), pages 835-851, July.
    3. Timothy C. Hesterberg & Barry L. Nelson, 1998. "Control Variates for Probability and Quantile Estimation," Management Science, INFORMS, vol. 44(9), pages 1295-1312, September.
    4. Pierre L’Ecuyer & Christiane Lemieux, 2002. "Recent Advances in Randomized Quasi-Monte Carlo Methods," International Series in Operations Research & Management Science, in: Moshe Dror & Pierre L’Ecuyer & Ferenc Szidarovszky (ed.), Modeling Uncertainty, chapter 0, pages 419-474, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J P C Kleijnen & W C M van Beers, 2013. "Monotonicity-preserving bootstrapped Kriging metamodels for expensive simulations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(5), pages 708-717, May.
    2. L. Jeff Hong, 2009. "Estimating Quantile Sensitivities," Operations Research, INFORMS, vol. 57(1), pages 118-130, February.
    3. Jangho Park & Rebecca Stockbridge & Güzin Bayraksan, 2021. "Variance reduction for sequential sampling in stochastic programming," Annals of Operations Research, Springer, vol. 300(1), pages 171-204, May.
    4. Christos Alexopoulos & David Goldsman & Anup C. Mokashi & Kai-Wen Tien & James R. Wilson, 2019. "Sequest: A Sequential Procedure for Estimating Quantiles in Steady-State Simulations," Operations Research, INFORMS, vol. 67(4), pages 1162-1183, July.
    5. Shane S. Drew & Tito Homem-de-Mello, 2012. "Some Large Deviations Results for Latin Hypercube Sampling," Methodology and Computing in Applied Probability, Springer, vol. 14(2), pages 203-232, June.
    6. Chaitra H. Nagaraja & Haikady N. Nagaraja, 2020. "Distribution‐free Approximate Methods for Constructing Confidence Intervals for Quantiles," International Statistical Review, International Statistical Institute, vol. 88(1), pages 75-100, April.
    7. Demet Batur & F. Fred Choobineh, 2021. "Selecting the Best Alternative Based on Its Quantile," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 657-671, May.
    8. Batur, Demet & Bekki, Jennifer M. & Chen, Xi, 2018. "Quantile regression metamodeling: Toward improved responsiveness in the high-tech electronics manufacturing industry," European Journal of Operational Research, Elsevier, vol. 264(1), pages 212-224.
    9. Daniel Bartl & Ludovic Tangpi, 2020. "Non-asymptotic convergence rates for the plug-in estimation of risk measures," Papers 2003.10479, arXiv.org, revised Oct 2022.
    10. Wei Jiang & Steven Kou, 2021. "Simulating risk measures via asymptotic expansions for relative errors," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 907-942, July.
    11. Yijie Peng & Chun-Hung Chen & Michael C. Fu & Jian-Qiang Hu & Ilya O. Ryzhov, 2021. "Efficient Sampling Allocation Procedures for Optimal Quantile Selection," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 230-245, January.
    12. Hui Dong & Marvin K. Nakayama, 2017. "Quantile Estimation with Latin Hypercube Sampling," Operations Research, INFORMS, vol. 65(6), pages 1678-1695, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2022. "Estimating risks of option books using neural-SDE market models," Papers 2202.07148, arXiv.org.
    2. Chen, E. Jack & Kelton, W. David, 2006. "Quantile and tolerance-interval estimation in simulation," European Journal of Operational Research, Elsevier, vol. 168(2), pages 520-540, January.
    3. Huei-Wen Teng, 2023. "Importance Sampling for Calculating the Value-at-Risk and Expected Shortfall of the Quadratic Portfolio with t-Distributed Risk Factors," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1125-1154, October.
    4. L. Jeff Hong, 2009. "Estimating Quantile Sensitivities," Operations Research, INFORMS, vol. 57(1), pages 118-130, February.
    5. Hui Dong & Marvin K. Nakayama, 2017. "Quantile Estimation with Latin Hypercube Sampling," Operations Research, INFORMS, vol. 65(6), pages 1678-1695, December.
    6. Pierre L’Ecuyer & Florian Puchhammer & Amal Ben Abdellah, 2022. "Monte Carlo and Quasi–Monte Carlo Density Estimation via Conditioning," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1729-1748, May.
    7. Athanassios N. Avramidis & James R. Wilson, 1998. "Correlation-Induction Techniques for Estimating Quantiles in Simulation Experiments," Operations Research, INFORMS, vol. 46(4), pages 574-591, August.
    8. Michael Freimer & Jeffrey Linderoth & Douglas Thomas, 2012. "The impact of sampling methods on bias and variance in stochastic linear programs," Computational Optimization and Applications, Springer, vol. 51(1), pages 51-75, January.
    9. Kilic, Onur A. & Tunc, Huseyin & Tarim, S. Armagan, 2018. "Heuristic policies for the stochastic economic lot sizing problem with remanufacturing under service level constraints," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1102-1109.
    10. Pierre L'Ecuyer & Christiane Lemieux, 2000. "Variance Reduction via Lattice Rules," Management Science, INFORMS, vol. 46(9), pages 1214-1235, September.
    11. Pierre L’Ecuyer, 2009. "Quasi-Monte Carlo methods with applications in finance," Finance and Stochastics, Springer, vol. 13(3), pages 307-349, September.
    12. Okten, Giray & Eastman, Warren, 2004. "Randomized quasi-Monte Carlo methods in pricing securities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(12), pages 2399-2426, December.
    13. E Saliby & R J Paul, 2009. "A farewell to the use of antithetic variates in Monte Carlo simulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 1026-1035, July.
    14. Xi Chen & Kyoung-Kuk Kim, 2016. "Efficient VaR and CVaR Measurement via Stochastic Kriging," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 629-644, November.
    15. Xiaoqun Wang & Ken Seng Tan, 2013. "Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction," Management Science, INFORMS, vol. 59(2), pages 376-389, July.
    16. Pierre L'Ecuyer & Christian Lécot & Bruno Tuffin, 2008. "A Randomized Quasi-Monte Carlo Simulation Method for Markov Chains," Operations Research, INFORMS, vol. 56(4), pages 958-975, August.
    17. Xiaoqun Wang & Ian H. Sloan, 2011. "Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction," Operations Research, INFORMS, vol. 59(1), pages 80-95, February.
    18. Modarres, Reza, 2002. "Efficient nonparametric estimation of a distribution function," Computational Statistics & Data Analysis, Elsevier, vol. 39(1), pages 75-95, March.
    19. Yang Huang & Yongdao Zhou, 2022. "Convergence of Uniformity Criteria and the Application in Numerical Integration," Mathematics, MDPI, vol. 10(19), pages 1-20, October.
    20. Vladimir K. Kaishev & Dimitrina S. Dimitrova, 2009. "Dirichlet Bridge Sampling for the Variance Gamma Process: Pricing Path-Dependent Options," Management Science, INFORMS, vol. 55(3), pages 483-496, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:49:y:2003:i:2:p:230-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.