Advanced Search
MyIDEAS: Login

Comparing the CCA Subspace Method to Pseudo Maximum Likelihood Methods in the case of No Exogenous Inputs

Contents:

Author Info

  • Dietmar Bauer
Registered author(s):

    Abstract

    This paper deals with the CCA subspace algorithm proposed in Larimore [Proceeding of 1983 American Control Conference (1983) pp. 445-451], which constitutes an alternative to the classical criteria optimization based approach to the identification of linear dynamic models for a stationary process. Subspace algorithms for the estimation of linear models have been advocated mainly due to their numerical properties. A large variety of different subspace algorithms is known to provide strongly consistent and asymptotically normal estimates of the system under mild assumptions on the noise and the underlying true system. This paper shows that for certain versions of CCA described in the paper the estimates are asymptotically equivalent to pseudo maximum-likelihood estimates in the sense that the difference in the estimators multiplied by the square root of the sample size converges to zero (in probability). Therefore these versions of CCA are asymptotically efficient for Gaussian innovations. Copyright 2005 Blackwell Publishing Ltd.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.blackwell-synergy.com/servlet/useragent?func=synergy&synergyAction=showTOC&journalCode=jtsa&volume=26&issue=5&year=2005&part=null
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Wiley Blackwell in its journal Journal of Time Series Analysis.

    Volume (Year): 26 (2005)
    Issue (Month): 5 (09)
    Pages: 631-668

    as in new window
    Handle: RePEc:bla:jtsera:v:26:y:2005:i:5:p:631-668

    Contact details of provider:
    Web page: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782

    Order Information:
    Web: http://www.blackwellpublishing.com/subs.asp?ref=0143-9782

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Alfredo García‐Hiernaux, 2011. "Forecasting linear dynamical systems using subspace methods," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(5), pages 462-468, 09.
    2. Izquierdo, Segismundo S. & Hernández, Cesáreo & del Hoyo, Juan, 2006. "Forecasting VARMA processes using VAR models and subspace-based state space models," MPRA Paper 4235, University Library of Munich, Germany.
    3. Christian Kascha & Karel Mertens, 2008. "Business cycle analysis and VARMA models," Working Paper 2008/05, Norges Bank.
    4. Christian Kascha, 2007. "A Comparison of Estimation Methods for Vector Autoregressive Moving-Average Models," Economics Working Papers ECO2007/12, European University Institute.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:26:y:2005:i:5:p:631-668. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.