Advanced Search
MyIDEAS: Login to save this paper or follow this series

Modified whittle estimation of multilateral spatial models

Contents:

Author Info

  • Peter Robinson

    ()
    (Institute for Fiscal Studies and London School of Economics)

  • J. Vidal Sanz

Abstract

We consider the estimation of parametric models for stationary spatial or spatio-temporal data on a d-dimensional lattice, for d = 2. The achievement of asymptotic efficiency under Gaussianity, and asymptotic normality more generally, with standard convergence rate, faces two obstacles. One is the 'edge effect', which worsens with increasing d. The other is the difficulty of computing a continuous-frequency form of Whittle estimate or a time domain Gaussian maximum likelihood estimate, especially in case of multilateral models, due mainly to the Jacobian term. An extension of the discrete-frequency Whittle estimate from the time series literature deals conveniently with the latter problem, but when subjected to a standard device for avoiding the edge effect has disastrous asymptotic performance, along with finite sample numerical drawbacks, the objective function lacking a minimum-distance interpretation and losing any global convexity properties. We overcome these problems by first optimizing a standard, guaranteed non-negative, discrete-frequency, Whittle function, without edge-effect correction, providing an estimate with a slow convergence rate, then improving this by a sequence of computationally convenient approximate Newton iterations using a modified, almost-unbiased periodogram, the desired asymptotic properties being achieved after finitely many steps. A Monte Carlo study of finite sample behaviour is included. The asymptotic regime allows increase in both directions, unlike the usual random fields formulation, with the central limit theorem established after re-ordering as a triangular array. When the data are non-Gaussian, the asymptotic variances of all parameter estimates are likely to be affected, and we provide a consistent, non-negative definite, estimate of the asymptotic variance matrix.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://cemmap.ifs.org.uk/wps/cwp0318.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Centre for Microdata Methods and Practice, Institute for Fiscal Studies in its series CeMMAP working papers with number CWP18/03.

as in new window
Length: 43 pp.
Date of creation: Nov 2003
Date of revision:
Handle: RePEc:ifs:cemmap:18/03

Contact details of provider:
Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Phone: (+44) 020 7291 4800
Fax: (+44) 020 7323 4780
Email:
Web page: http://cemmap.ifs.org.uk
More information through EDIRC

Order Information:
Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Email:

Related research

Keywords: Spatial data; multilateral models; Whittle estimation;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Hannan, E. J. & Dunsmuir, W. T. M. & Deistler, M., 1980. "Estimation of vector ARMAX models," Journal of Multivariate Analysis, Elsevier, vol. 10(3), pages 275-295, September.
  2. Robinson, Peter M, 1988. "The Stochastic Difference between Econometric Statistics," Econometrica, Econometric Society, vol. 56(3), pages 531-48, May.
  3. Korezlioglu, Hayri & Loubaton, Philippe, 1986. "Spectral factorization of wide sense stationary processes on 2," Journal of Multivariate Analysis, Elsevier, vol. 19(1), pages 24-47, June.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Conley, Timothy G. & Molinari, Francesca, 2005. "Spatial Correlation Robust Inference with Errors in Location or Distance," Working Papers 05-12, Cornell University, Center for Analytic Economics.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:18/03. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Stephanie Seavers).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.