IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v89y2021i3p605-634.html
   My bibliography  Save this article

A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications

Author

Listed:
  • Brian J. Reich
  • Shu Yang
  • Yawen Guan
  • Andrew B. Giffin
  • Matthew J. Miller
  • Ana Rappold

Abstract

The scientific rigor and computational methods of causal inference have had great impacts on many disciplines but have only recently begun to take hold in spatial applications. Spatial causal inference poses analytic challenges due to complex correlation structures and interference between the treatment at one location and the outcomes at others. In this paper, we review the current literature on spatial causal inference and identify areas of future work. We first discuss methods that exploit spatial structure to account for unmeasured confounding variables. We then discuss causal analysis in the presence of spatial interference including several common assumptions used to reduce the complexity of the interference patterns under consideration. These methods are extended to the spatiotemporal case where we compare and contrast the potential outcomes framework with Granger causality and to geostatistical analyses involving spatial random fields of treatments and responses. The methods are introduced in the context of observational environmental and epidemiological studies and are compared using both a simulation study and analysis of the effect of ambient air pollution on COVID‐19 mortality rate. Code to implement many of the methods using the popular Bayesian software OpenBUGS is provided.

Suggested Citation

  • Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
  • Handle: RePEc:bla:istatr:v:89:y:2021:i:3:p:605-634
    DOI: 10.1111/insr.12452
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12452
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Keele, Luke J. & Titiunik, Rocío, 2015. "Geographic Boundaries as Regression Discontinuities," Political Analysis, Cambridge University Press, vol. 23(1), pages 127-155, January.
    2. Corwin M. Zigler & Krista Watts & Robert W. Yeh & Yun Wang & Brent A. Coull & Francesca Dominici, 2013. "Model Feedback in Bayesian Propensity Score Estimation," Biometrics, The International Biometric Society, vol. 69(1), pages 263-273, March.
    3. Halbert White & Xun Lu, 2010. "Granger Causality and Dynamic Structural Systems," Journal of Financial Econometrics, Oxford University Press, vol. 8(2), pages 193-243, spring.
    4. Gabriele Hegerl & Francis Zwiers, 2011. "Use of models in detection and attribution of climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(4), pages 570-591, July.
    5. Sobel, Michael E., 2006. "What Do Randomized Studies of Housing Mobility Demonstrate?: Causal Inference in the Face of Interference," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1398-1407, December.
    6. Imbens, Guido W. & Lemieux, Thomas, 2008. "Regression discontinuity designs: A guide to practice," Journal of Econometrics, Elsevier, vol. 142(2), pages 615-635, February.
    7. Corwin Matthew Zigler, 2016. "The Central Role of Bayes’ Theorem for Joint Estimation of Causal Effects and Propensity Scores," The American Statistician, Taylor & Francis Journals, vol. 70(1), pages 47-54, February.
    8. Hauke Thaden & Thomas Kneib, 2018. "Structural Equation Models for Dealing With Spatial Confounding," The American Statistician, Taylor & Francis Journals, vol. 72(3), pages 239-252, July.
    9. Delgado, Michael S. & Florax, Raymond J.G.M., 2015. "Difference-in-differences techniques for spatial data: Local autocorrelation and spatial interaction," Economics Letters, Elsevier, vol. 137(C), pages 123-126.
    10. Weihua Cao & Anastasios A. Tsiatis & Marie Davidian, 2009. "Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data," Biometrika, Biometrika Trust, vol. 96(3), pages 723-734.
    11. S Yang & L Wang & P Ding, 2019. "Causal inference with confounders missing not at random," Biometrika, Biometrika Trust, vol. 106(4), pages 875-888.
    12. S Yang & P Ding, 2018. "Asymptotic inference of causal effects with observational studies trimmed by the estimated propensity scores," Biometrika, Biometrika Trust, vol. 105(2), pages 487-493.
    13. Elizabeth L. Ogburn & Ilya Shpitser & Youjin Lee, 2020. "Causal inference, social networks and chain graphs," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1659-1676, October.
    14. Alberto Abadie & Guido W. Imbens, 2016. "Matching on the Estimated Propensity Score," Econometrica, Econometric Society, vol. 84, pages 781-807, March.
    15. Hodges, James S. & Reich, Brian J., 2010. "Adding Spatially-Correlated Errors Can Mess Up the Fixed Effect You Love," The American Statistician, American Statistical Association, vol. 64(4), pages 325-334.
    16. Eric B. Laber & Nick J. Meyer & Brian J. Reich & Krishna Pacifici & Jaime A. Collazo & John M. Drake, 2018. "Optimal treatment allocations in space and time for on‐line control of an emerging infectious disease," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(4), pages 743-789, August.
    17. Brian J. Reich, 2012. "Spatiotemporal quantile regression for detecting distributional changes in environmental processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(4), pages 535-553, August.
    18. Garritt L. Page & Yajun Liu & Zhuoqiong He & Donchu Sun, 2017. "Estimation and Prediction in the Presence of Spatial Confounding for Spatial Linear Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 780-797, September.
    19. Ashenfelter, Orley & Card, David, 1985. "Using the Longitudinal Structure of Earnings to Estimate the Effect of Training Programs," The Review of Economics and Statistics, MIT Press, vol. 67(4), pages 648-660, November.
    20. L. Liu & M. G. Hudgens & S. Becker-Dreps, 2016. "On inverse probability-weighted estimators in the presence of interference," Biometrika, Biometrika Trust, vol. 103(4), pages 829-842.
    21. Carolina Perez-Heydrich & Michael G. Hudgens & M. Elizabeth Halloran & John D. Clemens & Mohammad Ali & Michael E. Emch, 2014. "Assessing effects of cholera vaccination in the presence of interference," Biometrics, The International Biometric Society, vol. 70(3), pages 731-741, September.
    22. McCandless Lawrence C & Douglas Ian J. & Evans Stephen J. & Smeeth Liam, 2010. "Cutting Feedback in Bayesian Regression Adjustment for the Propensity Score," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-24, March.
    23. Olli Saarela & David A. Stephens & Erica E. M. Moodie & Marina B. Klein, 2015. "Rejoinder “On Bayesian estimation of marginal structural models”," Biometrics, The International Biometric Society, vol. 71(2), pages 299-301, June.
    24. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    25. Olli Saarela & David A. Stephens & Erica E. M. Moodie & Marina B. Klein, 2015. "On Bayesian estimation of marginal structural models," Biometrics, The International Biometric Society, vol. 71(2), pages 279-288, June.
    26. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    27. John Hughes & Murali Haran, 2013. "Dimension reduction and alleviation of confounding for spatial generalized linear mixed models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(1), pages 139-159, January.
    28. Peter J. Diggle & Raquel Menezes & Ting‐li Su, 2010. "Geostatistical inference under preferential sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 191-232, March.
    29. Gelfand A.E. & Kim H-J. & Sirmans C.F. & Banerjee S., 2003. "Spatial Modeling With Spatially Varying Coefficient Processes," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 387-396, January.
    30. O. Saarela & L. R. Belzile & D. A. Stephens, 2016. "A Bayesian view of doubly robust causal inference," Biometrika, Biometrika Trust, vol. 103(3), pages 667-681.
    31. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    32. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    33. Brian J. Reich & James S. Hodges & Vesna Zadnik, 2006. "Effects of Residual Smoothing on the Posterior of the Fixed Effects in Disease-Mapping Models," Biometrics, The International Biometric Society, vol. 62(4), pages 1197-1206, December.
    34. Ephraim M. Hanks & Erin M. Schliep & Mevin B. Hooten & Jennifer A. Hoeting, 2015. "Restricted spatial regression in practice: geostatistical models, confounding, and robustness under model misspecification," Environmetrics, John Wiley & Sons, Ltd., vol. 26(4), pages 243-254, June.
    35. D. Pati & B. J. Reich & D. B. Dunson, 2011. "Bayesian geostatistical modelling with informative sampling locations," Biometrika, Biometrika Trust, vol. 98(1), pages 35-48.
    36. Sarah Baird & J. Aislinn Bohren & Craig McIntosh & Berk Özler, 2018. "Optimal Design of Experiments in the Presence of Interference," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 844-860, December.
    37. Georgia Papadogeorgou & Fabrizia Mealli & Corwin M. Zigler, 2019. "Causal inference with interfering units for cluster and population level treatment allocation programs," Biometrics, The International Biometric Society, vol. 75(3), pages 778-787, September.
    38. Reich, Brian J. & Fuentes, Montserrat & Dunson, David B., 2011. "Bayesian Spatial Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 6-20.
    39. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timothy M. Lenton & Jesse F. Abrams & Annett Bartsch & Sebastian Bathiany & Chris A. Boulton & Joshua E. Buxton & Alessandra Conversi & Andrew M. Cunliffe & Sophie Hebden & Thomas Lavergne & Benjamin , 2024. "Remotely sensing potential climate change tipping points across scales," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Georgia Papadogeorgou, 2022. "Discussion on “Spatial+: a novel approach to spatial confounding” by Emiko Dupont, Simon N. Wood, and Nicole H. Augustin," Biometrics, The International Biometric Society, vol. 78(4), pages 1305-1308, December.
    3. Brian J. Reich & Shu Yang & Yawen Guan, 2022. "Discussion on “Spatial+: A novel approach to spatial confounding” by Dupont, Wood, and Augustin," Biometrics, The International Biometric Society, vol. 78(4), pages 1291-1294, December.
    4. Emiko Dupont & Simon N. Wood & Nicole H. Augustin, 2022. "Rejoinder to the discussions of “Spatial+: A novel approach to spatial confounding”," Biometrics, The International Biometric Society, vol. 78(4), pages 1309-1312, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Giffin & B. J. Reich & S. Yang & A. G. Rappold, 2023. "Generalized propensity score approach to causal inference with spatial interference," Biometrics, The International Biometric Society, vol. 79(3), pages 2220-2231, September.
    2. Isa Marques & Thomas Kneib & Nadja Klein, 2022. "Mitigating spatial confounding by explicitly correlating Gaussian random fields," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    3. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    4. Sujatro Chakladar & Samuel Rosin & Michael G. Hudgens & M. Elizabeth Halloran & John D. Clemens & Mohammad Ali & Michael E. Emch, 2022. "Inverse probability weighted estimators of vaccine effects accommodating partial interference and censoring," Biometrics, The International Biometric Society, vol. 78(2), pages 777-788, June.
    5. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    6. Jennifer F. Bobb & Maricela F. Cruz & Stephen J. Mooney & Adam Drewnowski & David Arterburn & Andrea J. Cook, 2022. "Accounting for spatial confounding in epidemiological studies with individual‐level exposures: An exposure‐penalized spline approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1271-1293, July.
    7. Widemberg S. Nobre & Alexandra M. Schmidt & João B. M. Pereira, 2021. "On the Effects of Spatial Confounding in Hierarchical Models," International Statistical Review, International Statistical Institute, vol. 89(2), pages 302-322, August.
    8. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    9. Joshua P. Keller & Adam A. Szpiro, 2020. "Selecting a scale for spatial confounding adjustment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1121-1143, June.
    10. Emiko Dupont & Simon N. Wood & Nicole H. Augustin, 2022. "Spatial+: A novel approach to spatial confounding," Biometrics, The International Biometric Society, vol. 78(4), pages 1279-1290, December.
    11. João B. M. Pereira & Widemberg S. Nobre & Igor F. L. Silva & Alexandra M. Schmidt, 2020. "Spatial confounding in hurdle multilevel beta models: the case of the Brazilian Mathematical Olympics for Public Schools," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1051-1073, June.
    12. Karim Anaya‐Izquierdo & Neal Alexander, 2021. "Spatial regression and spillover effects in cluster randomized trials with count outcomes," Biometrics, The International Biometric Society, vol. 77(2), pages 490-505, June.
    13. Soumen Dey & Mohan Delampady & Ravishankar Parameshwaran & N. Samba Kumar & Arjun Srivathsa & K. Ullas Karanth, 2017. "Bayesian Methods for Estimating Animal Abundance at Large Spatial Scales Using Data from Multiple Sources," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(2), pages 111-139, June.
    14. Philip A. White & Durban G. Keeler & Daniel Sheanshang & Summer Rupper, 2022. "Improving piecewise linear snow density models through hierarchical spatial and orthogonal functional smoothing," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    15. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    16. Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
    17. Yi Zhang & Kosuke Imai, 2023. "Individualized Policy Evaluation and Learning under Clustered Network Interference," Papers 2311.02467, arXiv.org, revised Feb 2024.
    18. Swen Kuh & Grace S. Chiu & Anton H. Westveld, 2020. "Latent Causal Socioeconomic Health Index," Papers 2009.12217, arXiv.org, revised Oct 2023.
    19. Janine B. Illian & David F. R. P. Burslem, 2017. "Improving the usability of spatial point process methodology: an interdisciplinary dialogue between statistics and ecology," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 495-520, October.
    20. Brian J. Reich & Howard H. Chang & Kristen M. Foley, 2014. "A spectral method for spatial downscaling," Biometrics, The International Biometric Society, vol. 70(4), pages 932-942, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:89:y:2021:i:3:p:605-634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.