IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v105y2018i2p487-493..html
   My bibliography  Save this article

Asymptotic inference of causal effects with observational studies trimmed by the estimated propensity scores

Author

Listed:
  • S Yang
  • P Ding

Abstract

SUMMARYCausal inference with observational studies often relies on the assumptions of unconfoundedness and overlap of covariate distributions in different treatment groups. The overlap assumption is violated when some units have propensity scores close to $0$ or $1$, so both practical and theoretical researchers suggest dropping units with extreme estimated propensity scores. However, existing trimming methods often do not incorporate the uncertainty in this design stage and restrict inference to only the trimmed sample, due to the nonsmoothness of the trimming. We propose a smooth weighting, which approximates sample trimming and has better asymptotic properties. An advantage of our estimator is its asymptotic linearity, which ensures that the bootstrap can be used to make inference for the target population, incorporating uncertainty arising from both design and analysis stages. We extend the theory to the average treatment effect on the treated, suggesting trimming samples with estimated propensity scores close to $1$.

Suggested Citation

  • S Yang & P Ding, 2018. "Asymptotic inference of causal effects with observational studies trimmed by the estimated propensity scores," Biometrika, Biometrika Trust, vol. 105(2), pages 487-493.
  • Handle: RePEc:oup:biomet:v:105:y:2018:i:2:p:487-493.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asy008
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shu Yang & Yunshu Zhang, 2023. "Multiply robust matching estimators of average and quantile treatment effects," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 235-265, March.
    2. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    3. Jingyu Liang & Jie Liu, 2022. "Evaluation of Educational Interventions Based on Average Treatment Effect: A Case Study," Mathematics, MDPI, vol. 10(22), pages 1-18, November.
    4. Benjamin Lu & Eli Ben-Michael & Avi Feller & Luke Miratrix, 2023. "Is It Who You Are or Where You Are? Accounting for Compositional Differences in Cross-Site Treatment Effect Variation," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 420-453, August.
    5. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    6. Perilla, Sergio & Prem, Mounu & Purroy, Miguel E. & Vargas, Juan F., 2024. "How peace saves lives: Evidence from Colombia," World Development, Elsevier, vol. 176(C).
    7. Pengzhou Wu & Kenji Fukumizu, 2021. "$\beta$-Intact-VAE: Identifying and Estimating Causal Effects under Limited Overlap," Papers 2110.05225, arXiv.org.
    8. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    9. Dasom Lee & Shu Yang & Lin Dong & Xiaofei Wang & Donglin Zeng & Jianwen Cai, 2023. "Improving trial generalizability using observational studies," Biometrics, The International Biometric Society, vol. 79(2), pages 1213-1225, June.
    10. Yukun Ma & Pedro H. C. Sant'Anna & Yuya Sasaki & Takuya Ura, 2023. "Doubly Robust Estimators with Weak Overlap," Papers 2304.08974, arXiv.org, revised Apr 2023.
    11. D’Amour, Alexander & Ding, Peng & Feller, Avi & Lei, Lihua & Sekhon, Jasjeet, 2021. "Overlap in observational studies with high-dimensional covariates," Journal of Econometrics, Elsevier, vol. 221(2), pages 644-654.
    12. Shu Yang & Jae Kwang Kim, 2020. "Asymptotic theory and inference of predictive mean matching imputation using a superpopulation model framework," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 839-861, September.
    13. Xinwei Ma & Jingshen Wang, 2018. "Robust Inference Using Inverse Probability Weighting," Papers 1810.11397, arXiv.org, revised May 2019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:105:y:2018:i:2:p:487-493.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.