IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v23y2019i1p133-140.html
   My bibliography  Save this article

Adapting Stand‐Alone Renewable Energy Technologies for the Circular Economy through Eco‐Design and Recycling

Author

Listed:
  • John Gallagher
  • Biswajit Basu
  • Maria Browne
  • Alan Kenna
  • Sarah McCormack
  • Francesco Pilla
  • David Styles

Abstract

Renewable energy (RE) technologies are looked upon favorably to provide for future energy demands and reduce greenhouse gas (GHG) emissions. However, the installation of these technologies requires large quantities of finite material resources. We apply life cycle assessment to 100 years of electricity generation from three stand‐alone RE technologies—solar photovoltaics, run‐of‐river hydro, and wind—to evaluate environmental burden profiles against baseline electricity generation from fossil fuels. We then devised scenarios to incorporate circular economy (CE) improvements targeting hotspots in systems’ life cycle, specifically (1) improved recycling rates for raw materials and (ii) the application of eco‐design. Hydro presented the lowest environmental burdens per kilowatt‐hour of electricity generation compared with other RE technologies, owing to its higher efficiency and longer life spans for main components. Distinct results were observed in the environmental performance of each system based on the consideration of improved recycling rates and eco‐design. CE measures produced similar modest savings in already low GHG emissions burdens for each technology, while eco‐design specifically had the potential to provide significant savings in abiotic resource depletion. Further research to explore the full potential of CE measures for RE technologies will curtail the resource intensity of RE technologies required to mitigate climate change.

Suggested Citation

  • John Gallagher & Biswajit Basu & Maria Browne & Alan Kenna & Sarah McCormack & Francesco Pilla & David Styles, 2019. "Adapting Stand‐Alone Renewable Energy Technologies for the Circular Economy through Eco‐Design and Recycling," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 133-140, February.
  • Handle: RePEc:bla:inecol:v:23:y:2019:i:1:p:133-140
    DOI: 10.1111/jiec.12703
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12703
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Varun & Prakash, Ravi & Bhat, Inder Krishnan, 2009. "Energy, economics and environmental impacts of renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2716-2721, December.
    2. Cooper, Simone & Skelton, Alexandra C.H. & Owen, Anne & Densley-Tingley, Danielle & Allwood, Julian M., 2016. "A multi-method approach for analysing the potential employment impacts of material efficiency," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 54-66.
    3. Ester van der Voet & Lauran van Oers & Igor Nikolic, 2004. "Dematerialization: Not Just a Matter of Weight," Journal of Industrial Ecology, Yale University, vol. 8(4), pages 121-137, October.
    4. Akella, A.K. & Saini, R.P. & Sharma, M.P., 2009. "Social, economical and environmental impacts of renewable energy systems," Renewable Energy, Elsevier, vol. 34(2), pages 390-396.
    5. Gallagher, John & Styles, David & McNabola, Aonghus & Williams, A. Prysor, 2015. "Making green technology greener: Achieving a balance between carbon and resource savings through ecodesign in hydropower systems," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 11-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kosmadakis, Ioannis E. & Elmasides, Costas & Koulinas, Georgios & Tsagarakis, Konstantinos P., 2021. "Energy unit cost assessment of six photovoltaic-battery configurations," Renewable Energy, Elsevier, vol. 173(C), pages 24-41.
    2. Milousi, Maria & Souliotis, Manolis, 2023. "A circular economy approach to residential solar thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 242-252.
    3. Anna Manuella Melo Nunes & Luiz Moreira Coelho Junior & Raphael Abrahão & Edvaldo Pereira Santos Júnior & Flávio José Simioni & Paulo Rotella Junior & Luiz Célio Souza Rocha, 2023. "Public Policies for Renewable Energy: A Review of the Perspectives for a Circular Economy," Energies, MDPI, vol. 16(1), pages 1-28, January.
    4. Mendoza, Joan Manuel F. & Gallego-Schmid, Alejandro & Velenturf, Anne P.M. & Jensen, Paul D. & Ibarra, Dorleta, 2022. "Circular economy business models and technology management strategies in the wind industry: Sustainability potential, industrial challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    5. Jha, Amit Prakash & Mahajan, Aarushi & Singh, Sanjay Kumar & Kumar, Piyush, 2022. "Renewable energy proliferation for sustainable development: Role of cross-border electricity trade," Renewable Energy, Elsevier, vol. 201(P1), pages 1189-1199.
    6. Jiandong Chen & Chong Xu & Yinyin Wu & Zihao Li & Malin Song, 2022. "Drivers and trajectories of China’s renewable energy consumption," Annals of Operations Research, Springer, vol. 313(1), pages 441-459, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Boqiang & He, Jiaxin, 2017. "Is biomass power a good choice for governments in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1218-1230.
    2. Kruger, Wikus & Stritzke, Susann & Trotter, Philipp A., 2019. "De-risking solar auctions in sub-Saharan Africa – A comparison of site selection strategies in South Africa and Zambia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 429-438.
    3. Rajvikram Madurai Elavarasan & Leoponraj Selvamanohar & Kannadasan Raju & Raghavendra Rajan Vijayaraghavan & Ramkumar Subburaj & Mohammad Nurunnabi & Irfan Ahmad Khan & Syed Afridhis & Akshaya Harihar, 2020. "A Holistic Review of the Present and Future Drivers of the Renewable Energy Mix in Maharashtra, State of India," Sustainability, MDPI, vol. 12(16), pages 1-33, August.
    4. Makade, Rahul G. & Chakrabarti, Siddharth & Jamil, Basharat & Sakhale, C.N., 2020. "Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach," Renewable Energy, Elsevier, vol. 146(C), pages 2044-2059.
    5. Tabata, Tomohiro & Okuda, Takaaki, 2012. "Life cycle assessment of woody biomass energy utilization: Case study in Gifu Prefecture, Japan," Energy, Elsevier, vol. 45(1), pages 944-951.
    6. Koo, Jamin & Park, Kyungtae & Shin, Dongil & Yoon, En Sup, 2011. "Economic evaluation of renewable energy systems under varying scenarios and its implications to Korea's renewable energy plan," Applied Energy, Elsevier, vol. 88(6), pages 2254-2260, June.
    7. Wei Wang & Leonid Melnyk & Oleksandra Kubatko & Bohdan Kovalov & Luc Hens, 2023. "Economic and Technological Efficiency of Renewable Energy Technologies Implementation," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    8. Caliskan, Hakan, 2015. "Thermodynamic and environmental analyses of biomass, solar and electrical energy options based building heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1016-1034.
    9. Marina Moreira & Ivan Felipe Silva Santos & Lilian Ferreira Freitas & Flávio Ferreira Freitas & Regina Mambeli Barros & Geraldo Lúcio Tiago Filho, 2022. "Energy and economic analysis for a desalination plant powered by municipal solid waste incineration and natural gas in Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1799-1826, February.
    10. González-Limón, José Manuel & Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2013. "Understanding local adoption of tax credits to promote solar-thermal energy: Spanish municipalities' case," Energy, Elsevier, vol. 62(C), pages 277-284.
    11. Ahlborg, Helene & Hammar, Linus, 2014. "Drivers and barriers to rural electrification in Tanzania and Mozambique – Grid-extension, off-grid, and renewable energy technologies," Renewable Energy, Elsevier, vol. 61(C), pages 117-124.
    12. Varun & Prakash, Ravi & Bhat, I.K., 2010. "A figure of merit for evaluating sustainability of renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1640-1643, August.
    13. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Aldona Standar & Agnieszka Kozera & Łukasz Satoła, 2021. "The Importance of Local Investments Co-Financed by the European Union in the Field of Renewable Energy Sources in Rural Areas of Poland," Energies, MDPI, vol. 14(2), pages 1-23, January.
    15. Upadhyay, Subho & Sharma, M.P., 2016. "Selection of a suitable energy management strategy for a hybrid energy system in a remote rural area of India," Energy, Elsevier, vol. 94(C), pages 352-366.
    16. Blankenship, Brian & Aklin, Michaël & Urpelainen, Johannes & Nandan, Vagisha, 2022. "Jobs for a just transition: Evidence on coal job preferences from India," Energy Policy, Elsevier, vol. 165(C).
    17. Albiona Pestisha & Zoltán Gabnai & Aidana Chalgynbayeva & Péter Lengyel & Attila Bai, 2023. "On-Farm Renewable Energy Systems: A Systematic Review," Energies, MDPI, vol. 16(2), pages 1-25, January.
    18. Andreas Welling, 2017. "Green Finance: Recent developments, characteristics and important actors," FEMM Working Papers 170002, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    19. Józef Paska & Tomasz Surma & Paweł Terlikowski & Krzysztof Zagrajek, 2020. "Electricity Generation from Renewable Energy Sources in Poland as a Part of Commitment to the Polish and EU Energy Policy," Energies, MDPI, vol. 13(16), pages 1-31, August.
    20. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:23:y:2019:i:1:p:133-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.