IDEAS home Printed from https://ideas.repec.org/a/bla/acctfi/v45y2005i4p537-551.html
   My bibliography  Save this article

Modelling conditional heteroscedasticity and jumps in Australian short‐term interest rates

Author

Listed:
  • Kam Fong Chan

Abstract

The present paper explores a class of jump–diffusion models for the Australian short‐term interest rate. The proposed general model incorporates linear mean‐reverting drift, time‐varying volatility in the form of LEVELS (sensitivity of the volatility to the levels of the short‐rates) and generalized autoregressive conditional heteroscedasticity (GARCH), as well as jumps, to match the salient features of the short‐rate dynamics. Maximum likelihood estimation reveals that pure diffusion models that ignore the jump factor are mis‐specified in the sense that they imply a spuriously high speed of mean‐reversion in the level of short‐rate changes as well as a spuriously high degree of persistence in volatility. Once the jump factor is incorporated, the jump models that can also capture the GARCH‐induced volatility produce reasonable estimates of the speed of mean reversion. The introduction of the jump factor also yields reasonable estimates of the GARCH parameters. Overall, the LEVELS–GARCH–JUMP model fits the data best.

Suggested Citation

  • Kam Fong Chan, 2005. "Modelling conditional heteroscedasticity and jumps in Australian short‐term interest rates," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 45(4), pages 537-551, December.
  • Handle: RePEc:bla:acctfi:v:45:y:2005:i:4:p:537-551
    DOI: 10.1111/j.1467-629X.2005.00153.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-629X.2005.00153.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-629X.2005.00153.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Broze, Laurence & Scaillet, Olivier & Zakoian, Jean-Michel, 1995. "Testing for continuous-time models of the short-term interest rate," Journal of Empirical Finance, Elsevier, vol. 2(3), pages 199-223, September.
    2. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    3. Michael Johannes, 2004. "The Statistical and Economic Role of Jumps in Continuous-Time Interest Rate Models," Journal of Finance, American Finance Association, vol. 59(1), pages 227-260, February.
    4. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
    5. Das, Sanjiv R., 2002. "The surprise element: jumps in interest rates," Journal of Econometrics, Elsevier, vol. 106(1), pages 27-65, January.
    6. Kees G. Koedijk & François G. J. A. Nissen & Peter C. Schotman & Christian C. P. Wolff, 1997. "The Dynamics of Short-Term Interest Rate Volatility Reconsidered," Review of Finance, European Finance Association, vol. 1(1), pages 105-130.
    7. Licheng Sun, 2003. "Nonlinear Drift And Stochastic Volatility: An Empirical Investigation Of Short‐Term Interest Rate Models," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 26(3), pages 389-404, September.
    8. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    9. Sirimon Treepongkaruna & Stephen Gray, 2003. "On the robustness of short–term interest rate models," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 43(1), pages 87-121, March.
    10. Elerain, Ola & Chib, Siddhartha & Shephard, Neil, 2001. "Likelihood Inference for Discretely Observed Nonlinear Diffusions," Econometrica, Econometric Society, vol. 69(4), pages 959-993, July.
    11. Philippe Jorion, 1988. "On Jump Processes in the Foreign Exchange and Stock Markets," The Review of Financial Studies, Society for Financial Studies, vol. 1(4), pages 427-445.
    12. Nieuwland, Frederick G M C & Verschoor, Willem F C & Wolff, Christian C P, 1994. "Stochastic trends and jumps in EMS exchange rates," Journal of International Money and Finance, Elsevier, vol. 13(6), pages 699-727, December.
    13. Ric Battellino & John Broadbent & Philip Lowe, 1997. "The Implementation of Monetary Policy in Australia," RBA Research Discussion Papers rdp9703, Reserve Bank of Australia.
    14. Yongmiao Hong & Haitao Li & Feng Zhao, 2004. "Out-of-Sample Performance of Discrete-Time Spot Interest Rate Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 457-473, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vijay A. Murik, 2013. "Bond pricing with a surface of zero coupon yields," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 53(2), pages 497-512, June.
    2. Christopher M. Bilson & Timothy J. Brailsford & Luke J. Sullivan & Sirimon Treepongkaruna, 2008. "Pricing Bonds in the Australian Market," Australian Journal of Management, Australian School of Business, vol. 33(1), pages 123-143, June.
    3. José Carlos Nogueira Cavalcante Filho & Edson Daniel Lopes Gonçalves, 2015. "Jump Diffusion Modelling for the Brazilian Short-Term Interest Rate," Brazilian Business Review, Fucape Business School, vol. 12(1), pages 80-103, January.
    4. Vijay A Murik, 2013. "Measuring monetary policy expectations," Australian Journal of Management, Australian School of Business, vol. 38(1), pages 49-65, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shaoyu & Zheng, Tingguo, 2017. "Modeling spot rate using a realized stochastic volatility model with level effect and dynamic drift☆," The North American Journal of Economics and Finance, Elsevier, vol. 40(C), pages 200-221.
    2. M. Rypdal & O. L{o}vsletten, 2011. "Multifractal modeling of short-term interest rates," Papers 1111.5265, arXiv.org.
    3. repec:wyi:journl:002109 is not listed on IDEAS
    4. Jang, Bong-Gyu & Yoon, Ji Hee, 2010. "Analytic valuation formulas for range notes and an affine term structure model with jump risks," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2132-2145, September.
    5. repec:wyi:journl:002118 is not listed on IDEAS
    6. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    7. Episcopos, Athanasios, 2000. "Further evidence on alternative continuous time models of the short-term interest rate," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 10(2), pages 199-212, June.
    8. Al-Zoubi, Haitham A., 2009. "Short-term spot rate models with nonparametric deterministic drift," The Quarterly Review of Economics and Finance, Elsevier, vol. 49(3), pages 731-747, August.
    9. Muteba Mwamba, John & Thabo, Lethaba & Uwilingiye, Josine, 2014. "Modelling the short-term interest rate with stochastic differential equation in continuous time: linear and nonlinear models," MPRA Paper 64386, University Library of Munich, Germany.
    10. Andrew D. Sanford & Gael M. Martin, 2006. "Bayesian comparison of several continuous time models of the Australian short rate," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 46(2), pages 309-326, June.
    11. Hong, Yongmiao & Lin, Hai & Wang, Shouyang, 2010. "Modeling the dynamics of Chinese spot interest rates," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 1047-1061, May.
    12. Beliaeva, Natalia & Nawalkha, Sanjay, 2012. "Pricing American interest rate options under the jump-extended constant-elasticity-of-variance short rate models," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 151-163.
    13. Hong, Yongmiao & Lin, Hai & Wang, Shouyang, 2010. "Modeling the dynamics of Chinese spot interest rates," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 1047-1061, May.
    14. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    15. Bali, Turan G., 2003. "Modeling the stochastic behavior of short-term interest rates: Pricing implications for discount bonds," Journal of Banking & Finance, Elsevier, vol. 27(2), pages 201-228, February.
    16. de Jong, F.C.J.M., 1997. "Time-series and cross section information in affine term structure models," Other publications TiSEM 08704828-0ee7-4069-8a94-2, Tilburg University, School of Economics and Management.
    17. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    18. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    19. Faff, Robert & Gray, Philip, 2006. "On the estimation and comparison of short-rate models using the generalised method of moments," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 3131-3146, November.
    20. Fan, Longzhen & Johansson, Anders C., 2010. "China's official rates and bond yields," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 996-1007, May.
    21. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, January.
    22. Tunaru, Diana, 2017. "Gaussian estimation and forecasting of the U.K. yield curve with multi-factor continuous-time models," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 119-129.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:acctfi:v:45:y:2005:i:4:p:537-551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/aaanzea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.