IDEAS home Printed from https://ideas.repec.org/a/ags/ndjtrf/206982.html
   My bibliography  Save this article

Derivation of Crop Residue Feedstock Supply Curves Using Geographic Information Systems

Author

Listed:
  • Khachatryan, Hayk
  • Jessup, Eric L.
  • Casavant, Ken

Abstract

This paper reports on the availability, collection and transportation costs of agricultural crop residue for cellulosic ethanol processing in the state of Washington using Geographic Information Systems. The GIS Network Analyst extension toolset is employed to map and spatially analyze the crop residue available within given distances/haul zones for 12 eastern counties. Using census feature classification codes, driving speed limits were assigned to all road segments to calculate haul times to a specific biorefinery location. The feedstock farm gate cost, transportation costs, resource availability and geographic distribution were incorporated to derive feedstock supply curves. To better understand how variation in transportation costs affects the feedstock delivered costs, a sensitivity analysis is conducted incorporating a range of diesel prices.

Suggested Citation

  • Khachatryan, Hayk & Jessup, Eric L. & Casavant, Ken, 2009. "Derivation of Crop Residue Feedstock Supply Curves Using Geographic Information Systems," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 48(1).
  • Handle: RePEc:ags:ndjtrf:206982
    DOI: 10.22004/ag.econ.206982
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/206982/files/1746-3121-2-PB.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.206982?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Perlack, R.D. & Turhollow, A.F., 2003. "Feedstock cost analysis of corn stover residues for further processing," Energy, Elsevier, vol. 28(14), pages 1395-1403.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tyner, Wallace E. & Rismiller, Craig W., 2010. "Transportation Infrastructure Implications of Development of a Cellulosic Biofuels Industry for Indiana," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 49(1).
    2. Babcock, Michael S., 2010. "Transportation impacts of increased ethanol production: A kansas case study," 51st Annual Transportation Research Forum, Arlington, Virginia, March 11-13, 2010 207239, Transportation Research Forum.
    3. Cervi, Walter Rossi & Lamparelli, Rubens Augusto Camargo & Seabra, Joaquim EugĂȘnio Abel & Junginger, Martin & van der Hilst, Floor, 2020. "Spatial assessment of the techno-economic potential of bioelectricity production from sugarcane straw," Renewable Energy, Elsevier, vol. 156(C), pages 1313-1324.
    4. Yu, T. Edward & Larson, James A. & English, Burton C. & Fu, Joshua S. & Calcagno III, Jimmy & Wilson, Bradly, 2016. "Dedicated Energy Crop Supply Chair and Associated Feedstock Transportation Emissions: A Case Study of Tennessee," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 55(1), April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scott M. Swinton & Felix Dulys & Sarah S.H. Klammer, 2021. "Why Biomass Residue Is Not as Plentiful as It Looks: Case Study on Economic Supply of Logging Residues," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(3), pages 1003-1025, September.
    2. Diep, Nhu Quynh & Fujimoto, Shinji & Minowa, Tomoaki & Sakanishi, Kinya & Nakagoshi, Nobukazu, 2012. "Estimation of the potential of rice straw for ethanol production and the optimum facility size for different regions in Vietnam," Applied Energy, Elsevier, vol. 93(C), pages 205-211.
    3. Sun, Shanxia & Johnson, David R. & Hertel, Thomas W., 2018. "Quantifying the Impacts of Biomass Co-Firing on GHG Emissions from Coal-Powered Electricity Generation," 2018 Annual Meeting, August 5-7, Washington, D.C. 274452, Agricultural and Applied Economics Association.
    4. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    5. Miranowski, John & Rosburg, Alicia, 2010. "An Economic Breakeven Model of Cellulosic Feedstock Production and Ethanol Conversion with Implied Carbon Pricing," Staff General Research Papers Archive 13166, Iowa State University, Department of Economics.
    6. Wang, Xiaoquan & Morrison, William & Du, Zhenyi & Wan, Yiqin & Lin, Xiangyang & Chen, Paul & Ruan, Roger, 2012. "Biomass temperature profile development and its implications under the microwave-assisted pyrolysis condition," Applied Energy, Elsevier, vol. 99(C), pages 386-392.
    7. Fan, Kang-Qi & Zhang, Peng-Fei & Pei, Z.J., 2013. "An assessment model for collecting and transporting cellulosic biomass," Renewable Energy, Elsevier, vol. 50(C), pages 786-794.
    8. Tittmann, P.W. & Parker, N.C. & Hart, Q.J. & Jenkins, B.M., 2010. "A spatially explicit techno-economic model of bioenergy and biofuels production in California," Journal of Transport Geography, Elsevier, vol. 18(6), pages 715-728.
    9. William Stafford & Adrian Lotter & Alan Brent & Graham von Maltitz, 2017. "Biofuels technology: A look forward," WIDER Working Paper Series 087, World Institute for Development Economic Research (UNU-WIDER).
    10. Nurun Nahar & Ramsharan Pandey & Ghasideh Pourhashem & David Ripplinger & Scott W. Pryor, 2021. "Life Cycle Perspectives of Using Non-Pelleted vs. Pelleted Corn Stover in a Cellulosic Biorefinery," Energies, MDPI, vol. 14(9), pages 1-14, April.
    11. Akhtari, Shaghaygh & Sowlati, Taraneh & Day, Ken, 2014. "The effects of variations in supply accessibility and amount on the economics of using regional forest biomass for generating district heat," Energy, Elsevier, vol. 67(C), pages 631-640.
    12. Gallagher, Paul W. & Baumes, Harry, 2012. "Biomass Supply From Corn Residues: Estimates and Critical Review of Procedures," Agricultural Economic Reports 308488, United States Department of Agriculture, Economic Research Service.
    13. Petrolia, Daniel R., 2006. "Ethanol from Biomass: Economic and Environmental Potential of Converting Corn Stover and Hardwood Forest Residue in Minnesota," 2006 Annual meeting, July 23-26, Long Beach, CA 21422, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    14. Parker, Nathan C, 2007. "Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw," Institute of Transportation Studies, Working Paper Series qt8sp9n37c, Institute of Transportation Studies, UC Davis.
    15. Lavigne, Amanda & Powers, Susan E., 2007. "Evaluating fuel ethanol feedstocks from energy policy perspectives: A comparative energy assessment of corn and corn stover," Energy Policy, Elsevier, vol. 35(11), pages 5918-5930, November.
    16. Carriquiry, Miguel A. & Du, Xiaodong & Timilsina, Govinda R., 2011. "Second generation biofuels: Economics and policies," Energy Policy, Elsevier, vol. 39(7), pages 4222-4234, July.
    17. Diep, Nhu Quynh & Sakanishi, Kinya & Nakagoshi, Nobukazu & Fujimoto, Shinji & Minowa, Tomoaki, 2015. "Potential for rice straw ethanol production in the Mekong Delta, Vietnam," Renewable Energy, Elsevier, vol. 74(C), pages 456-463.
    18. Bundhoo, Zumar M.A. & Surroop, Dinesh, 2019. "Evaluation of the potential of bio-methane production from field-based crop residues in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    19. Golecha, Rajdeep & Gan, Jianbang, 2016. "Effects of corn stover year-to-year supply variability and market structure on biomass utilization and cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 34-44.
    20. Parker, Nathan, 2007. "Optimizing the Design of Biomass Hydrogen Supply ChainsUsing Real-World Spatial Distributions: A Case Study Using California Rice Straw," Institute of Transportation Studies, Working Paper Series qt5kr728sp, Institute of Transportation Studies, UC Davis.

    More about this item

    Keywords

    Public Economics;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ndjtrf:206982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://www.trforum.org/journal/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.