IDEAS home Printed from https://ideas.repec.org/a/ags/ijag24/340579.html
   My bibliography  Save this article

Rice phenology and growth simulation using DSSAT- CERES-Rice crop model under the different temperatures changing with climatic condition

Author

Listed:
  • Islam, Shams Shaila
  • Sanitchon, Jirawat
  • Hasan, Ahmed Khairul

Abstract

This research paper aims to evaluate the performance of DSSAT CERES-Rice model in simulating the impact of different (28 °C, 30 °C and 32 °C) increased temperatures change with the relations of five upland rice genotypes (Dawk Pa-yawm, Mai Tahk, Bow Leb Nahng, Dawk Kha 50 and Dawk Kahm) on grain yield for future crop management. Results showed that temperature significantly affected grain yields, harvest index, flowering and maturity date which indicate that medium temperature (30 °C) gave highest grain yield bearing genotype Dawk Kahm (6,700 kg/ ha) whereas at maximum temperature (32 °C), simulated grain yields varied from 3094 to 6460 kg/ ha. Root Mean Square Error (RMSE) values of simulated and observed data less than 10% indicated that grain weight, leaf area index, tillers number and harvest index had more consistency agreement with the yield. Thus, it was proved that the CERES-Rice crop simulation model was more useful as a tool for different phenological traits under changing temperature conditions. And the model approximated grain yields at different temperatures with reasonable accuracy.

Suggested Citation

  • Islam, Shams Shaila & Sanitchon, Jirawat & Hasan, Ahmed Khairul, 2021. "Rice phenology and growth simulation using DSSAT- CERES-Rice crop model under the different temperatures changing with climatic condition," International Journal of Agricultural Sciences and Technology (IJAGST), SvedbergOpen, vol. 1(2), May.
  • Handle: RePEc:ags:ijag24:340579
    DOI: 10.22004/ag.econ.340579
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/340579/files/Islam.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.340579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen, Chao & Wang, Enli & Yu, Qiang, 2010. "Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1175-1184, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hisham Eldardiry & Emad Habib & David M. Borrok, 2020. "Accounting for Inter-Annual and Seasonal Variability in Assessment of Water Supply Stress: Perspectives from a humid region in the USA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2517-2534, June.
    2. Zeng, Ruiyun & Lin, Xiaomao & Welch, Stephen M. & Yang, Shanshan & Huang, Na & Sassenrath, Gretchen F. & Yao, Fengmei, 2023. "Impact of water deficit and irrigation management on winter wheat yield in China," Agricultural Water Management, Elsevier, vol. 287(C).
    3. Hu, Shi & Mo, Xingguo & Huang, Farong, 2019. "Retrieval of photosynthetic capability for yield gap attribution in maize via model-data fusion," Agricultural Water Management, Elsevier, vol. 226(C).
    4. Zeng, Ruiyun & Yao, Fengmei & Zhang, Sha & Yang, Shanshan & Bai, Yun & Zhang, Jiahua & Wang, Jingwen & Wang, Xin, 2021. "Assessing the effects of precipitation and irrigation on winter wheat yield and water productivity in North China Plain," Agricultural Water Management, Elsevier, vol. 256(C).
    5. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    6. Li, Bingbing & Biswas, Asim & Wang, Yunqiang & Li, Zhi, 2021. "Identifying the dominant effects of climate and land use change on soil water balance in deep loessial vadose zone," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Wang, Xiangping & Yang, Jingsong & Liu, Guangming & Yao, Rongjiang & Yu, Shipeng, 2015. "Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution," Agricultural Water Management, Elsevier, vol. 149(C), pages 44-54.
    8. Ramírez-Rodrigues, Melissa A. & Alderman, Phillip D. & Stefanova, Lydia & Cossani, C. Mariano & Flores, Dagoberto & Asseng, Senthold, 2016. "The value of seasonal forecasts for irrigated, supplementary irrigated, and rainfed wheat cropping systems in northwest Mexico," Agricultural Systems, Elsevier, vol. 147(C), pages 76-86.
    9. Fang, Qin & Zhang, Xiying & Shao, Liwei & Chen, Suying & Sun, Hongyong, 2018. "Assessing the performance of different irrigation systems on winter wheat under limited water supply," Agricultural Water Management, Elsevier, vol. 196(C), pages 133-143.
    10. Liu, Yang & Zhang, Xueling & Xi, Luoyan & Liao, Yuncheng & Han, Juan, 2020. "Ridge-furrow planting promotes wheat grain yield and water productivity in the irrigated sub-humid region of China," Agricultural Water Management, Elsevier, vol. 231(C).
    11. Wang, Bo & van Dam, Jos & Yang, Xiaolin & Ritsema, Coen & Du, Taisheng & Kang, Shaozhong, 2023. "Reducing water productivity gap by optimizing irrigation regime for winter wheat-summer maize system in the North China Plain," Agricultural Water Management, Elsevier, vol. 280(C).
    12. Liu, H.L. & Yang, J.Y. & Tan, C.S. & Drury, C.F. & Reynolds, W.D. & Zhang, T.Q. & Bai, Y.L. & Jin, J. & He, P. & Hoogenboom, G., 2011. "Simulating water content, crop yield and nitrate-N loss under free and controlled tile drainage with subsurface irrigation using the DSSAT model," Agricultural Water Management, Elsevier, vol. 98(6), pages 1105-1111, April.
    13. Luo, Jianmei & Shen, Yanjun & Qi, Yongqing & Zhang, Yucui & Xiao, Dengpan, 2018. "Evaluating water conservation effects due to cropping system optimization on the Beijing-Tianjin-Hebei plain, China," Agricultural Systems, Elsevier, vol. 159(C), pages 32-41.
    14. Kima, Aimé Sévérin & Traore, Seydou & Wang, Yu-Min & Chung, Wen-Guey, 2014. "Multi-genes programing and local scale regression for analyzing rice yield response to climate factors using observed and downscaled data in Sahel," Agricultural Water Management, Elsevier, vol. 146(C), pages 149-162.
    15. van Oort, P.A.J. & Wang, G. & Vos, J. & Meinke, H. & Li, B.G. & Huang, J.K. & van der Werf, W., 2016. "Towards groundwater neutral cropping systems in the Alluvial Fans of the North China Plain," Agricultural Water Management, Elsevier, vol. 165(C), pages 131-140.
    16. Turkeltaub, Tuvia & Gongadze, Kate & Lü, Yihe & Huang, Mingbin & Jia, Xiaoxu & Yang, Huiyi & Shao, Ming'an & Binley, Andrew & Harris, Paul & Wu, Lianhai, 2022. "A review of models for simulating the soil-plant interface for different climatic conditions and land uses in the Loess Plateau, China," Ecological Modelling, Elsevier, vol. 474(C).
    17. Zhao, Gang & Bryan, Brett A. & Song, Xiaodong, 2014. "Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters," Ecological Modelling, Elsevier, vol. 279(C), pages 1-11.
    18. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    19. Xinchun Cao & Pute Wu & Yubao Wang & Xining Zhao, 2014. "Water Footprint of Grain Product in Irrigated Farmland of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2213-2227, June.
    20. Aftab Wajid & Khalid Hussain & Ayesha Ilyas & Muhammad Habib-ur-Rahman & Qamar Shakil & Gerrit Hoogenboom, 2021. "Crop Models: Important Tools in Decision Support System to Manage Wheat Production under Vulnerable Environments," Agriculture, MDPI, vol. 11(11), pages 1-22, November.

    More about this item

    Keywords

    Crop Production/Industries;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ijag24:340579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/inrapfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.