IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i8p2213-2227.html
   My bibliography  Save this article

Water Footprint of Grain Product in Irrigated Farmland of China

Author

Listed:
  • Xinchun Cao
  • Pute Wu
  • Yubao Wang
  • Xining Zhao

Abstract

China faces the dual challenge of grain production pressure and water scarcity. It is significant to reduce water footprint of grain product (WFGP, m 3 /t) in irrigated farmland. The focus of grain production and agricultural water use, and the precondition is to determine the WFGP and its composition. This paper estimates the WFGP in irrigated farmland of 31 provinces (including municipalities, autonomous regions) a by collecting actual data of 443 typical irrigation districts in 1998, 2005 and 2010, and analyses its temporal and spatial variation in irrigated farmland of China. The result shows that the WFGP in each province decreases with time except in Jiangxi and Hunan, and the average value of all provinces reduced from 1494 m 3 /t in 1998 to 1243 m 3 /t in 2010. The WFGP decreases faster in more developed municipal cities and major grain production provinces. The annual average WFGP in irrigated farmland is 1339 m 3 /t and the blue and green water account for 63.5 % and 36.5 % of the total, respectively. The WFGP and its composition are significantly different between provinces. Generally, provinces distributed inside and beyond Huang-Huai-Hai Plain, have a higher water productivity, lower WFGP and blue water footprint of grain product, while most provinces located in northwest, northeast, southeast and south China have a higher WFGP and lower proportion of green water in the WFGP as a whole. Portion of the blue water footprint (BWFGP) is not consumed for crop evapotranspiration (BWFGP ET ) but conveyance loss (BWFGP cl ). The national averaged BWFGP cl decreases with time and but still remains up to 466 m 3 /t in 2010, making up 34.8 % of the WFGP. In order to safeguard grain security and ease the water resource pressure, the Chinese government should increase investment and apply advanced technology for developing water-saving agriculture, improve the efficiency of water use and further reduce the WFGP. Considering also the contribution of grain output and the relatively high WFGP, the government should give priority to developing water-saving agriculture in the Northeast of China. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Xinchun Cao & Pute Wu & Yubao Wang & Xining Zhao, 2014. "Water Footprint of Grain Product in Irrigated Farmland of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2213-2227, June.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:8:p:2213-2227
    DOI: 10.1007/s11269-014-0607-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0607-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0607-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shifeng Fang & Huan Pei & Zhihui Liu & Keith Beven & Zhaocai Wei, 2010. "Water Resources Assessment and Regional Virtual Water Potential in the Turpan Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3321-3332, October.
    2. Liu, Junguo & Williams, Jimmy R. & Zehnder, Alexander J.B. & Yang, Hong, 2007. "GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale," Agricultural Systems, Elsevier, vol. 94(2), pages 478-493, May.
    3. Pilar Montesinos & Emilio Camacho & Blanca Campos & Juan Rodríguez-Díaz, 2011. "Analysis of Virtual Irrigation Water. Application to Water Resources Management in a Mediterranean River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1635-1651, April.
    4. Keller, A. A., 1995. "Effective efficiency: a water use efficiency concept for allocating freshwater resources," IWMI Working Papers H044344, International Water Management Institute.
    5. Keller, A. A., 1995. "Effective efficiency: a water use efficiency concept for allocating freshwater resources," IWMI Working Papers H043180, International Water Management Institute.
    6. Yang, Hong & Zhou, Yuan & Liu, Junguo, 2009. "Land and water requirements of biofuel and implications for food supply and the environment in China," Energy Policy, Elsevier, vol. 37(5), pages 1876-1885, May.
    7. van Oel, P.R. & Mekonnen, M.M. & Hoekstra, A.Y., 2009. "The external water footprint of the Netherlands: Geographically-explicit quantification and impact assessment," Ecological Economics, Elsevier, vol. 69(1), pages 82-92, November.
    8. M. Mekonnen & A. Hoekstra & R. Becht, 2012. "Mitigating the Water Footprint of Export Cut Flowers from the Lake Naivasha Basin, Kenya," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3725-3742, October.
    9. Chen, Chao & Wang, Enli & Yu, Qiang, 2010. "Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1175-1184, August.
    10. A. Hoekstra & A. Chapagain, 2007. "Water footprints of nations: Water use by people as a function of their consumption pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 35-48, January.
    11. Chapagain, A.K. & Hoekstra, A.Y., 2011. "The blue, green and grey water footprint of rice from production and consumption perspectives," Ecological Economics, Elsevier, vol. 70(4), pages 749-758, February.
    12. Chapagain, A.K. & Hoekstra, A.Y., 2007. "The water footprint of coffee and tea consumption in the Netherlands," Ecological Economics, Elsevier, vol. 64(1), pages 109-118, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Shu & Xinchun Cao & Mengyang Wu, 2021. "Clarifying Regional Water Scarcity in Agriculture based on the Theory of Blue, Green and Grey Water Footprints," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1101-1118, February.
    2. Huan Liu & Guangyuan Niu & Qingxiang Zhang & Yuxi Yang & Hong Yao, 2022. "Town-Level Aquatic Environmental Sensitivity Assessment Based on an Improved Ecological Footprint Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 763-777, January.
    3. Mengran Fu & Bin Guo & Weijiao Wang & Juan Wang & Lihua Zhao & Jianlin Wang, 2019. "Comprehensive Assessment of Water Footprints and Water Scarcity Pressure for Main Crops in Shandong Province, China," Sustainability, MDPI, vol. 11(7), pages 1-18, March.
    4. Tang, Jianzhao & Bai, Huizi & Zhang, Xinjun & Wang, Rende & Guo, Fenghua & Xiao, Dengpan & Zhou, Haitao, 2022. "Reducing potato water footprint by adjusting planting date in the agro-pastoral ecotone in North China," Ecological Modelling, Elsevier, vol. 474(C).
    5. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    6. Aihua Long & Pei Zhang & Yang Hai & Xiaoya Deng & Junfeng Li & Jie Wang, 2020. "Spatio-Temporal Variations of Crop Water Footprint and Its Influencing Factors in Xinjiang, China during 1988–2017," Sustainability, MDPI, vol. 12(22), pages 1-15, November.
    7. Li, Xuechun & Chen, Dan & Cao, Xinchun & Luo, Zhaohui & Webber, Michael, 2020. "Assessing the components of, and factors influencing, paddy rice water footprint in China," Agricultural Water Management, Elsevier, vol. 229(C).
    8. Aizhi Yu & Entai Cai & Min Yang & Zhishan Li, 2022. "An Analysis of Water Use Efficiency of Staple Grain Productions in China: Based on the Crop Water Footprints at Provincial Level," Sustainability, MDPI, vol. 14(11), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arjen Y. Hoekstra, 2017. "Water Footprint Assessment: Evolvement of a New Research Field," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3061-3081, August.
    2. S. Sun & P. Wu & Y. Wang & X. Zhao, 2013. "Temporal Variability of Water Footprint for Maize Production: The Case of Beijing from 1978 to 2008," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2447-2463, May.
    3. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    4. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    5. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    6. Yu Zhang & Qing Tian & Huan Hu & Miao Yu, 2019. "Water Footprint of Food Consumption by Chinese Residents," IJERPH, MDPI, vol. 16(20), pages 1-15, October.
    7. Sangam Shrestha & Vishnu Pandey & Chawalit Chanamai & Debapi Ghosh, 2013. "Green, Blue and Grey Water Footprints of Primary Crops Production in Nepal," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5223-5243, December.
    8. Han-Shen Chen, 2015. "Using Water Footprints for Examining the Sustainable Development of Science Parks," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    9. Liqiang Ge & Gaodi Xie & Caixia Zhang & Shimei Li & Yue Qi & Shuyan Cao & Tingting He, 2011. "An Evaluation of China’s Water Footprint," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2633-2647, August.
    10. P. Oel & A. Hoekstra, 2012. "Towards Quantification of the Water Footprint of Paper: A First Estimate of its Consumptive Component," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(3), pages 733-749, February.
    11. Huang, Feng & Li, Baoguo, 2010. "Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach: Part I: Method development and validation," Agricultural Water Management, Elsevier, vol. 97(7), pages 1077-1092, July.
    12. Okadera, Tomohiro & Chontanawat, Jaruwan & Gheewala, Shabbir H., 2014. "Water footprint for energy production and supply in Thailand," Energy, Elsevier, vol. 77(C), pages 49-56.
    13. Scheierling, S. M., 2014. "How to assess agricultural water productivity?: looking for water in the agricultural productivity and efficiency literature," IWMI Working Papers H046876, International Water Management Institute.
    14. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    15. Immerzeel, W.W. & Gaur, A. & Zwart, S.J., 2008. "Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment," Agricultural Water Management, Elsevier, vol. 95(1), pages 11-24, January.
    16. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    17. El-Shafie, A.F. & Osama, M.A. & Hussein, M.M. & El-Gindy, A.M. & Ragab, R., 2017. "Predicting soil moisture distribution, dry matter, water productivity and potato yield under a modified ‎gated pipe irrigation system: SALTMED model application using field experimental data," Agricultural Water Management, Elsevier, vol. 184(C), pages 221-233.
    18. M. Dinesh Kumar, 2018. "Proposing a solution to India’s water crisis: ‘paradigm shift’ or pushing outdated concepts?," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 34(1), pages 42-50, January.
    19. Ghahroodi, E. Mokari & Noory, H. & Liaghat, A.M., 2015. "Performance evaluation study and hydrologic and productive analysis of irrigation systems at the Qazvin irrigation network (Iran)," Agricultural Water Management, Elsevier, vol. 148(C), pages 189-195.
    20. Barker, Randolph & Dawe, D. & Inocencio, A., 2003. "Economics of water productivity in managing water for agriculture," Book Chapters,, International Water Management Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:8:p:2213-2227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.