IDEAS home Printed from https://ideas.repec.org/a/adp/ijesnr/v19y2019i3p84-88.html
   My bibliography  Save this article

Hydrodynamic Cavitation – A Promising Technology for Biomass Pretreatment

Author

Listed:
  • Ramesh Desikan

    (Department of Vegetable Science, Horticultural College and Research Institute for Women, Tamil Nadu Agricultural University, India)

  • Kiruthika Thangavelu

    (Department of Bioenergy, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, India)

  • Sivakumar Uthandi

    (Department of Agricultural Microbiology, Tamil Nadu Agricultural University, India)

Abstract

Biomass pretreatment is a highly expensive process used in bioethanol production from lignocellulosic feedstocks. The existing pretreatment methods are not commercialized due to two significant bottlenecks faced by the bioethanol industry such as higher operating cost and capital investment. Hydrodynamic cavitation technology is successfully demonstrated in the diversified fields. Hydrodynamic cavitation or its combinations is a viable technology for biomass pretreatment. This technology requires lesser energy inputs in terms of thermal or electrical energy as compared with other energy-intensive pretreatment methods. Other advantages of this technology are simple in reactor construction and easy to upscale. The combined hydrodynamic cavitation with alkali or biocatalyst showed positive results for different lignocellulosic biomass feedstocks. There is more scope for this technology to adopt in commercialization scale in both bioethanol and biorefinery industries.

Suggested Citation

  • Ramesh Desikan & Kiruthika Thangavelu & Sivakumar Uthandi, 2019. "Hydrodynamic Cavitation – A Promising Technology for Biomass Pretreatment," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 19(3), pages 84-88, May.
  • Handle: RePEc:adp:ijesnr:v:19:y:2019:i:3:p:84-88
    DOI: 10.19080/IJESNR.2019.19.556015
    as

    Download full text from publisher

    File URL: https://juniperpublishers.com/ijesnr/pdf/IJESNR.MS.ID.556015.pdf
    Download Restriction: no

    File URL: https://juniperpublishers.com/ijesnr/IJESNR.MS.ID.556015.php
    Download Restriction: no

    File URL: https://libkey.io/10.19080/IJESNR.2019.19.556015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pal, Amit & Verma, Ashish & Kachhwaha, S.S. & Maji, S., 2010. "Biodiesel production through hydrodynamic cavitation and performance testing," Renewable Energy, Elsevier, vol. 35(3), pages 619-624.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Kamil & Fatima M. Almarashda, 2023. "Economic Viability and Engine Performance Evaluation of Biodiesel Derived from Desert Palm Date Seeds," Energies, MDPI, vol. 16(3), pages 1-22, February.
    2. Ming-Chien Hsiao & Li-Wen Chang & Shuhn-Shyurng Hou, 2019. "Study of Solid Calcium Diglyceroxide for Biodiesel Production from Waste Cooking Oil Using a High Speed Homogenizer," Energies, MDPI, vol. 12(17), pages 1-11, August.
    3. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    4. Sadeghinezhad, E. & Kazi, S.N. & Sadeghinejad, Foad & Badarudin, A. & Mehrali, Mohammad & Sadri, Rad & Reza Safaei, Mohammad, 2014. "A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 29-44.
    5. Othman, Mohd Fahmi & Adam, Abdullah & Najafi, G. & Mamat, Rizalman, 2017. "Green fuel as alternative fuel for diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 694-709.
    6. Ahmad Abbaszadeh-Mayvan & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Intensification of Continuous Biodiesel Production from Waste Cooking Oils Using Shockwave Power Reactor: Process Evaluation and Optimization through Response Surface Methodology (RSM)," Energies, MDPI, vol. 11(10), pages 1-13, October.
    7. Kamil, Mohammed & Ramadan, Khalid M. & Olabi, Abdul Ghani & Al-Ali, Eman I. & Ma, Xiao & Awad, Omar I., 2020. "Economic, technical, and environmental viability of biodiesel blends derived from coffee waste," Renewable Energy, Elsevier, vol. 147(P1), pages 1880-1894.
    8. Monika Zubrowska-Sudol & Aleksandra Dzido & Agnieszka Garlicka & Piotr Krawczyk & Michał Stępień & Katarzyna Umiejewska & Justyna Walczak & Marcin Wołowicz & Katarzyna Sytek-Szmeichel, 2020. "Innovative Hydrodynamic Disintegrator Adjusted to Agricultural Substrates Pre-treatment Aimed at Methane Production Intensification—CFD Modelling and Batch Tests," Energies, MDPI, vol. 13(16), pages 1-19, August.
    9. Alsaiari, Mabkhoot & Bokhari, Awais & Chuah, Lai Fatt & Mubashir, Muhammad & Harraz, Farid A. & Almohana, Abdulaziz Ibrahim & Show, Pau Loke & Awasthi, Mukesh Kumar & Rizk, Moustafa A., 2023. "Synthesis of methyl esters from Hippophae rhamnoides via pilot scale hydrodynamic cavitation intensification reactor," Renewable Energy, Elsevier, vol. 205(C), pages 238-247.
    10. Spinelli, D. & Jez, S. & Pogni, R. & Basosi, R., 2013. "Environmental and life cycle analysis of a biodiesel production line from sunflower in the Province of Siena (Italy)," Energy Policy, Elsevier, vol. 59(C), pages 492-506.
    11. Sadeghinezhad, E. & Kazi, S.N. & Badarudin, A. & Oon, C.S. & Zubir, M.N.M. & Mehrali, Mohammad, 2013. "A comprehensive review of bio-diesel as alternative fuel for compression ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 410-424.
    12. Tesfa, B. & Mishra, R. & Zhang, C. & Gu, F. & Ball, A.D., 2013. "Combustion and performance characteristics of CI (compression ignition) engine running with biodiesel," Energy, Elsevier, vol. 51(C), pages 101-115.
    13. Thakkar, Kartikkumar & Kachhwaha, Surendra Singh & Kodgire, Pravin & Srinivasan, Seshasai, 2021. "Combustion investigation of ternary blend mixture of biodiesel/n-butanol/diesel: CI engine performance and emission control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    14. Kukana, Rajendra & Jakhar, Om Prakash, 2022. "Effect of ternary blends diesel/n-propanol/composite biodiesel on diesel engine operating parameters," Energy, Elsevier, vol. 260(C).
    15. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    16. Wan Ghazali, Wan Nor Maawa & Mamat, Rizalman & Masjuki, H.H. & Najafi, Gholamhassan, 2015. "Effects of biodiesel from different feedstocks on engine performance and emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 585-602.
    17. Amin Nedayali & Alireza Shirneshan, 2016. "Experimental Study of the Effects of Biodiesel on the Performance of a Diesel Power Generator," Energy & Environment, , vol. 27(5), pages 553-565, August.
    18. Fazal, M.A. & Haseeb, A.S.M.A. & Masjuki, H.H., 2011. "Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1314-1324, February.
    19. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2012. "Necessity of biodiesel utilization as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5732-5740.
    20. Sun, Xun & Liu, Shuai & Manickam, Sivakumar & Tao, Yang & Yoon, Joon Yong & Xuan, Xiaoxu, 2023. "Intensification of biodiesel production by hydrodynamic cavitation: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).

    More about this item

    Keywords

    earth and environment journals; environment journals; open access environment journals; peer reviewed environmental journals; open access; juniper publishers; ournal of Environmental Sciences; juniper publishers journals ; juniper publishers reivew;
    All these keywords.

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adp:ijesnr:v:19:y:2019:i:3:p:84-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Robert Thomas (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.