IDEAS home Printed from https://ideas.repec.org/r/oup/biomet/v103y2016i1p147-159..html
   My bibliography  Save this item

Partially functional linear regression in high dimensions

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yuping Hu & Siyu Wu & Sanying Feng & Junliang Jin, 2020. "Estimation in Partial Functional Linear Spatial Autoregressive Model," Mathematics, MDPI, vol. 8(10), pages 1-12, October.
  2. Sang, Peijun & Lockhart, Richard A. & Cao, Jiguo, 2018. "Sparse estimation for functional semiparametric additive models," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 105-118.
  3. Chang, Jinyuan & Chen, Cheng & Qiao, Xinghao & Yao, Qiwei, 2023. "An autocovariance-based learning framework for high-dimensional functional time series," LSE Research Online Documents on Economics 117910, London School of Economics and Political Science, LSE Library.
  4. Ma, Haiqiang & Li, Ting & Zhu, Hongtu & Zhu, Zhongyi, 2019. "Quantile regression for functional partially linear model in ultra-high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 135-147.
  5. Yanxia Liu & Zhihao Wang & Maozai Tian & Keming Yu, 2024. "Estimation and variable selection for generalized functional partially varying coefficient hybrid models," Statistical Papers, Springer, vol. 65(1), pages 93-119, February.
  6. Keyao Wang & Huiwen Wang & Shanshan Wang & Lihong Wang, 2024. "Variable selection for multivariate functional data via conditional correlation learning," Computational Statistics, Springer, vol. 39(4), pages 2375-2412, June.
  7. Cai Li & Luo Xiao & Sheng Luo, 2022. "Joint model for survival and multivariate sparse functional data with application to a study of Alzheimer's Disease," Biometrics, The International Biometric Society, vol. 78(2), pages 435-447, June.
  8. Cui, Xia & Lin, Hongmei & Lian, Heng, 2020. "Partially functional linear regression in reproducing kernel Hilbert spaces," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
  9. Yang, Seong J. & Shin, Hyejin & Lee, Sang Han & Lee, Seokho, 2020. "Functional linear regression model with randomly censored data: Predicting conversion time to Alzheimer ’s disease," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
  10. Maeng, Hye Young & Fryzlewicz, Piotr, 2019. "Regularised forecasting via smooth-rough partitioning of the regression coefficients," LSE Research Online Documents on Economics 100878, London School of Economics and Political Science, LSE Library.
  11. Guodong Shan & Yiheng Hou & Baisen Liu, 2020. "Bayesian robust estimation of partially functional linear regression models using heavy-tailed distributions," Computational Statistics, Springer, vol. 35(4), pages 2077-2092, December.
  12. Liebl, Dominik & Walders, Fabian, 2019. "Parameter regimes in partial functional panel regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 105-115.
  13. Liu, Yuzi & Peng, Ling & Liu, Qing & Lian, Heng & Liu, Xiaohui, 2023. "Functional additive expectile regression in the reproducing kernel Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
  14. Yu, Ping & Song, Xinyuan & Du, Jiang, 2024. "Composite expectile estimation in partial functional linear regression model," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
  15. Chi-Kuang Yeh & Peijun Sang, 2025. "Variable Selection in Multivariate Functional Linear Regression," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 17(1), pages 17-34, April.
  16. Wu Wang & Ying Sun & Huixia Judy Wang, 2023. "Latent group detection in functional partially linear regression models," Biometrics, The International Biometric Society, vol. 79(1), pages 280-291, March.
  17. Liang, Weijuan & Zhang, Qingzhao & Ma, Shuangge, 2023. "Locally sparse quantile estimation for a partially functional interaction model," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
  18. Jing Zhao & Sanying Feng & Yuping Hu, 2022. "Two-Sample Hypothesis Test for Functional Data," Mathematics, MDPI, vol. 10(21), pages 1-16, November.
  19. Yu, Dengdeng & Zhang, Li & Mizera, Ivan & Jiang, Bei & Kong, Linglong, 2019. "Sparse wavelet estimation in quantile regression with multiple functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 12-29.
  20. Ping Yu & Ting Li & Zhongyi Zhu & Zhongzhan Zhang, 2019. "Composite quantile estimation in partial functional linear regression model with dependent errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(6), pages 633-656, August.
  21. Xiongtao Dai & Zhenhua Lin & Hans‐Georg Müller, 2021. "Modeling sparse longitudinal data on Riemannian manifolds," Biometrics, The International Biometric Society, vol. 77(4), pages 1328-1341, December.
  22. Liu, Yanghui & Li, Yehua & Carroll, Raymond J. & Wang, Naisyin, 2022. "Predictive functional linear models with diverging number of semiparametric single-index interactions," Journal of Econometrics, Elsevier, vol. 230(2), pages 221-239.
  23. Zhang, Xiaochen & Zhang, Qingzhao & Ma, Shuangge & Fang, Kuangnan, 2022. "Subgroup analysis for high-dimensional functional regression," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
  24. Qi, Xin & Luo, Ruiyan, 2018. "Function-on-function regression with thousands of predictive curves," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 51-66.
  25. Aneiros, Germán & Novo, Silvia & Vieu, Philippe, 2022. "Variable selection in functional regression models: A review," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
  26. Weice Sun & Jiaqi Xu & Tao Liu, 2025. "Partially Functional Linear Regression Based on Gaussian Process Prior and Ensemble Learning," Mathematics, MDPI, vol. 13(5), pages 1-25, March.
  27. Tang, Qingguo & Tu, Wei & Kong, Linglong, 2023. "Estimation for partial functional partially linear additive model," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
  28. Yao, Fang & Sue-Chee, Shivon & Wang, Fan, 2017. "Regularized partially functional quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 39-56.
  29. Ping Yu & Zhongyi Zhu & Zhongzhan Zhang, 2019. "Robust exponential squared loss-based estimation in semi-functional linear regression models," Computational Statistics, Springer, vol. 34(2), pages 503-525, June.
  30. Yanping Hu & Zhongqi Pang, 2023. "Partially Functional Linear Models with Linear Process Errors," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
  31. Zhu, Hanbing & Zhang, Riquan & Yu, Zhou & Lian, Heng & Liu, Yanghui, 2019. "Estimation and testing for partially functional linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 296-314.
  32. Li, Ting & Song, Xinyuan & Zhang, Yingying & Zhu, Hongtu & Zhu, Zhongyi, 2021. "Clusterwise functional linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
  33. Jiang, Jiakun & Lin, Huazhen & Zhong, Qingzhi & Li, Yi, 2022. "Analysis of multivariate non-gaussian functional data: A semiparametric latent process approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
  34. Fanrong Zhao & Baoxue Zhang, 2024. "A U-Statistic for Testing the Lack of Dependence in Functional Partially Linear Regression Model," Mathematics, MDPI, vol. 12(16), pages 1-23, August.
  35. Rongjie Jiang & Liming Wang & Yang Bai, 2021. "Optimal model averaging estimator for semi-functional partially linear models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 167-194, February.
  36. Fang, Qin & Guo, Shaojun & Qiao, Xinghao, 2022. "Finite sample theory for high-dimensional functional/scalar time series with applications," LSE Research Online Documents on Economics 114637, London School of Economics and Political Science, LSE Library.
  37. Sanying Feng & Menghan Zhang & Tiejun Tong, 2022. "Variable selection for functional linear models with strong heredity constraint," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 321-339, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.