IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb475/200721.html
   My bibliography  Save this paper

Optimal designs for estimating the interesting part of a dose-effect curve

Author

Listed:
  • Miller, Frank
  • Dette, Holger
  • Guilbaud, Olivier

Abstract

We consider a dose-finding trial in phase IIB of drug development. For choosing an appropriate design for this trial the specification of two points is critical: an appropriate model for describing the dose-effect relationship and the specification of the aims of the trial (objectives), which will be the focus in the present paper. For many practical situations it is essential to have a robust trial objective that has little risk of changing during the complete trial due to external information. An important and realistic objective of a dose-finding trial is to obtain precise information about the interesting part of the dose-effect curve. We reflect this goal in a statistical optimality criterion and derive efficient designs using optimal design theory. In particular we determine non-adaptive Bayesian optimal designs, i.e. designs which are not changed by information obtained from an interim analysis. Compared with a traditional balanced design for this trial it is shown that the optimal design is substantially more efficient. This implies either again in information or essential savings in sample size. Further, we investigate an adaptive Bayesian optimal design that uses two different optimal designs before and after an interim analysis, and we compare the adaptive with the non-adaptive Bayesian optimal design. The basic concept is illustrated using a modification of a recent AstraZeneca trial.

Suggested Citation

  • Miller, Frank & Dette, Holger & Guilbaud, Olivier, 2007. "Optimal designs for estimating the interesting part of a dose-effect curve," Technical Reports 2007,21, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  • Handle: RePEc:zbw:sfb475:200721
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/25006/1/550479864.PDF
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dette, Holger & Bretz, Frank, 2007. "Optimal designs for dose finding studies," Technical Reports 2007,01, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. F. Bretz & J. C. Pinheiro & M. Branson, 2005. "Combining Multiple Comparisons and Modeling Techniques in Dose-Response Studies," Biometrics, The International Biometric Society, vol. 61(3), pages 738-748, September.
    3. Dette, Holger & Melas, Viatcheslav B. & Wong, Weng Kee, 2005. "Optimal Design for Goodness-of-Fit of the MichaelisMenten Enzyme Kinetic Function," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1370-1381, December.
    4. Holger Dette, 2004. "A comparison of sequential and non-sequential designs for discrimination between nested regression models," Biometrika, Biometrika Trust, vol. 91(1), pages 165-176, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyun Seung Won & Wong Weng Kee, 2015. "Multiple-Objective Optimal Designs for Studying the Dose Response Function and Interesting Dose Levels," The International Journal of Biostatistics, De Gruyter, vol. 11(2), pages 253-271, November.
    2. Bretz, Frank & Dette, Holger & Pinheiro, José, 2008. "Practical considerations for optimal designs in clinical dose finding studies," Technical Reports 2008,22, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kathrin Möllenhoff & Frank Bretz & Holger Dette, 2020. "Equivalence of regression curves sharing common parameters," Biometrics, The International Biometric Society, vol. 76(2), pages 518-529, June.
    2. Francesco De Pretis & Barbara Osimani, 2019. "New Insights in Computational Methods for Pharmacovigilance: E-Synthesis , a Bayesian Framework for Causal Assessment," IJERPH, MDPI, vol. 16(12), pages 1-19, June.
    3. Johan Verbeeck & Martin Geroldinger & Konstantin Thiel & Andrew Craig Hooker & Sebastian Ueckert & Mats Karlsson & Arne Cornelius Bathke & Johann Wolfgang Bauer & Geert Molenberghs & Georg Zimmermann, 2023. "How to analyze continuous and discrete repeated measures in small‐sample cross‐over trials?," Biometrics, The International Biometric Society, vol. 79(4), pages 3998-4011, December.
    4. Qiqi Deng & Kun Wang & Xiaofei Bai & Naitee Ting, 2019. "A Cautionary Note When a Dose-Ranging Study is Used for Proving the Concept," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 127-140, April.
    5. Beibei Guo & Ying Yuan, 2023. "DROID: dose‐ranging approach to optimizing dose in oncology drug development," Biometrics, The International Biometric Society, vol. 79(4), pages 2907-2919, December.
    6. Liu, W. & Ah-Kine, P. & Bretz, F. & Hayter, A.J., 2013. "Exact simultaneous confidence intervals for a finite set of contrasts of three, four or five generally correlated normal means," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 141-148.
    7. Kathrin Möllenhoff & Kirsten Schorning & Franziska Kappenberg, 2023. "Identifying alert concentrations using a model‐based bootstrap approach," Biometrics, The International Biometric Society, vol. 79(3), pages 2076-2088, September.
    8. Dette, Holger & Scheder, Regine, 2008. "A finite sample comparison of nonparametric estimates of the effective dose in quantal bioassay," Technical Reports 2008,05, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    9. Jianan Peng & Chu‐In Charles Lee & Karelyn A. Davis & Weizhen Wang, 2008. "Stepwise Confidence Intervals for Monotone Dose–Response Studies," Biometrics, The International Biometric Society, vol. 64(3), pages 877-885, September.
    10. Nairanjana Dasgupta & Monte J. Shaffer, 2012. "Many-to-one comparison of nonlinear growth curves for Washington's Red Delicious apple," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(8), pages 1781-1795, April.
    11. Belmiro P. M. Duarte & Weng Kee Wong, 2015. "Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach," International Statistical Review, International Statistical Institute, vol. 83(2), pages 239-262, August.
    12. Qiqi Deng & Xiaofei Bai & Dacheng Liu & Dooti Roy & Zhiliang Ying & Dan‐Yu Lin, 2019. "Power and sample size for dose‐finding studies with survival endpoints under model uncertainty," Biometrics, The International Biometric Society, vol. 75(1), pages 308-314, March.
    13. Yu, Jun & Kong, Xiangshun & Ai, Mingyao & Tsui, Kwok Leung, 2018. "Optimal designs for dose–response models with linear effects of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 217-228.
    14. Dette, Holger & Bretz, Frank, 2007. "Optimal designs for dose finding studies," Technical Reports 2007,01, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    15. C. Baayen & P. Hougaard & C. B. Pipper, 2015. "Testing effect of a drug using multiple nested models for the dose–response," Biometrics, The International Biometric Society, vol. 71(2), pages 417-427, June.
    16. Frank Schaarschmidt & Christian Ritz & Ludwig A. Hothorn, 2022. "The Tukey trend test: Multiplicity adjustment using multiple marginal models," Biometrics, The International Biometric Society, vol. 78(2), pages 789-797, June.
    17. Björn Bornkamp & Katja Ickstadt, 2009. "Bayesian Nonparametric Estimation of Continuous Monotone Functions with Applications to Dose–Response Analysis," Biometrics, The International Biometric Society, vol. 65(1), pages 198-205, March.
    18. Chi-Kuang Yeh & Julie Zhou, 2021. "Properties of optimal regression designs under the second-order least squares estimator," Statistical Papers, Springer, vol. 62(1), pages 75-92, February.
    19. Bornkamp, Björn & Pinheiro, José & Bretz, Frank, 2009. "MCPMod: An R Package for the Design and Analysis of Dose-Finding Studies," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i07).
    20. repec:jss:jstsof:29:i07 is not listed on IDEAS
    21. Georg Gutjahr & Björn Bornkamp, 2017. "Likelihood ratio tests for a dose-response effect using multiple nonlinear regression models," Biometrics, The International Biometric Society, vol. 73(1), pages 197-205, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb475:200721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/isdorde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.