IDEAS home Printed from
   My bibliography  Save this paper

On the minimax regret estimation of a restricted normal mean, and implications


  • Droge, Bernd


Consider estimating the mean of a normal distribution with known variance, when that mean is known to lie in a bounded interval. In a decision-theoretic framework we study finite sample properties of a class of nonlinear' estimators. These estimators are based on thresholding techniques which have become very popular in the context of wavelet estimation. Under squared errorloss we show that there exists unique minimax regret solution for the problem of selecting the threshold. For comparison, the behaviour' of linear shrinkers is also investigated. In special cases we illustrate the implications of our results for the problem of estimating the regression function in a nonparametric situation. This is possible since, as usual, a, coordinatewise application of the scalar results leads immediately to results for multivariate (sequence space) problems. Then it is well known that orthogonal transformations can be employed to turn statements about estimation over coefficient bodies in sequence space into statements about estimation over classes of smooth functions in noisy data. The performance of the proposed minimax regret optimal curve estimator is demonstrated by simulated data examples.

Suggested Citation

  • Droge, Bernd, 2002. "On the minimax regret estimation of a restricted normal mean, and implications," SFB 373 Discussion Papers 2002,81, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:200281

    Download full text from publisher

    File URL:
    Download Restriction: no


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Droge, Bernd, 2006. "Minimax regret comparison of hard and soft thresholding for estimating a bounded normal mean," Statistics & Probability Letters, Elsevier, vol. 76(1), pages 83-92, January.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:200281. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.