IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

On lp-stability of numerical schemes for affine stochastic delay differential equations stochastic recurrance relations

Listed author(s):
  • Gilsing, Hagen
Registered author(s):

    Numerical solutions of SDDE often reflect to only a limited extent the exact solution behaviour. Hence it is necessary to identify those parameters of SDDE and algorithm for which a numerical method in use is reliable. For affine SDDE test equations, there exist estimates of the stability regions of a numerical method. However, these results rely on bounds for covariance terms. In this paper exact hut high dimensional stochastic affine (linear) recurrence relations are derived for some p > 1. A reduction method presented here allows the representation of the corresponding characteristic polynomial as a determinant of a matrix of polynomial coefficients and lower dimension. This can be used to compute non-zero coefficients of the characteristic polynomial for application to stability questions concerning SDDE. A number of areas where work is continuing is indicated.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes in its series SFB 373 Discussion Papers with number 2002,59.

    in new window

    Date of creation: 2002
    Handle: RePEc:zbw:sfb373:200259
    Contact details of provider: Postal:
    Spandauer Str. 1,10178 Berlin

    Phone: +49-30-2093-5708
    Fax: +49-30-2093-5617
    Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:200259. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.