IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb373/2001100.html
   My bibliography  Save this paper

Robust estimation in nonlinear regression and limited dependent variable models

Author

Listed:
  • Čížek, Pavel

Abstract

Classical parametric estimation methods applied to nonlinear regression and limited-dependent-variable models are very sensitive to misspecification and data errors. On the other hand, semiparametric and nonparametric methods, which are not restricted by parametric assumptions, require more data and are less efficient. A third possible estimation approach is based on the theory of robust statistics, which builds upon parametric specification, but provides a methodology for designing misspecification-proof estimators. However, this concept, developed in statistics, has so far been applied almost exclusively to linear regression models. Therefore, I adapt some robust methods, such as least trimmed squares, to nonlinear and limited-dependent variable models. This paper presents the adapted robust estimators, proofs of their consistency, suitable computational methods, as well as examples of regression models which the proposed estimators can be applied to.

Suggested Citation

  • Čížek, Pavel, 2001. "Robust estimation in nonlinear regression and limited dependent variable models," SFB 373 Discussion Papers 2001,100, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:2001100
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/62677/1/725985534.pdf
    Download Restriction: no

    Other versions of this item:

    More about this item

    Keywords

    least trimmed squares; limited-dependent-variable models; nonlinear regression; robust estimation;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:2001100. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: http://edirc.repec.org/data/sfhubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.