IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb373/199918.html
   My bibliography  Save this paper

Efficient hedging: Cost versus shortfall risk

Author

Listed:
  • Föllmer, Hans
  • Leukert, Peter

Abstract

An investor faced with a contingent claim may eliminate risk by (super-)hedging in a financial market. As this is often quite expensive, we study partial hedges, which require less capital and reduce the risk. In a previous paper we determined quantile hedges which succeed with maximal probability, given a capital constraint. Here we look for strategies which minimize the shortfall risk defined as the expectation of the shortfall weighted by some loss function. The resulting efficient hedges allow the investor to interpolate in a systematic way between the extremes of no hedge and a perfect (super-)hedge, depending on the accepted level of shortfall risk.

Suggested Citation

  • Föllmer, Hans & Leukert, Peter, 1999. "Efficient hedging: Cost versus shortfall risk," SFB 373 Discussion Papers 1999,18, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:199918
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/61739/1/722177283.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    2. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, pages 159-178.
    3. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, pages 3-30.
    4. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, pages 185-215.
    5. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, pages 159-178.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    risk management; stochastic volatility; shortfall risk; Hedging; efficient hedges; lower partial moments; convex duality;

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:199918. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: http://edirc.repec.org/data/sfhubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.