IDEAS home Printed from https://ideas.repec.org/p/zag/wpaper/1008.html
   My bibliography  Save this paper

Segmentacijska analiza poslovnih klijenata banaka pomoću samo-organizirajućih mapa

Author

Listed:
  • Sandro Juković

    ()

Abstract

Samo-organizirajuće mape (SOM) su dvoslojne umjetne neuronske mreže koje su inicijalno kreirane za rješavanje problema klaster analize, vizualizacije i apstrakcije podataka. Njihov najveći doprinos je u području vizualizacije više-dimenzionalnih podataka na dvo-dimenzionalnu mapu, koja odražava eventualne veze među ulaznim podacima. Cilj ovog rada je prezentirati teorijsku osnovu SOM-a i prikazati primjenu metode u svrhu segmentacije tržišta. U radu je objašnjen algoritam SOM-Ward koji je implementiran u softveru Viscovery SOMine. Tada je u istom softveru provedena klaster analiza prema anketi poslovnih klijenata banaka. Nakon toga su prikazani i interpretirani rezultati te analize kao tri segmenta. Segmenti se razlikuju s obzirom na atribute trgovinskog poslovanja s inozemstvom (uvoz/izvoz), godišnje prihod, podrijetlo kapitala, stavove o odabiru kredita, planove zapošljavanja itd. Tako kreirani segmenti mogu biti korišteni za daljnje odlučivanje o poduzimanju marketinških aktivnosti.

Suggested Citation

  • Sandro Juković, 2010. "Segmentacijska analiza poslovnih klijenata banaka pomoću samo-organizirajućih mapa," EFZG Working Papers Series 1008, Faculty of Economics and Business, University of Zagreb.
  • Handle: RePEc:zag:wpaper:1008
    as

    Download full text from publisher

    File URL: http://web.efzg.hr/repec/pdf/Clanak%2010-08.pdf
    File Function: First version, 2010
    Download Restriction: no

    More about this item

    Keywords

    samo-organizirajuće mape; SOM; neuronska mreža; klaster analiza; segmentacija tržišta; rudarenje podataka;

    JEL classification:

    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zag:wpaper:1008. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (WPS). General contact details of provider: http://edirc.repec.org/data/fefzghr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.