IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

The Harmonic Fisher Equation and the Inflationary Bias of Real Uncertainty

  • John Geanakoplos

    ()

    (Yale University, Cowles Foundation)

  • Ioannis Karatzas

    ()

    (Columbia University, Department of Statistics)

  • Martin Shubik

    ()

    (Yale University, School of Management)

  • William D. Sudderth

    ()

    (University of Minnesota - Twin Cities, College of Liberal Arts, School of Statistics)

The classical Fisher equation asserts that in a nonstochastic economy, the inflation rate must equal the difference between the nominal and real interest rates. We extend this equation to a representative agent economy with real uncertainty in which the central bank sets the nominal rate of interest. The Fisher equation still holds, but with the rate of inflation replaced by the harmonic mean of the growth rate of money. Except for logarithmic utility, we show that on almost every path the long-run rate of inflation is strictly higher than it would be in the nonstochastic world obtained by replacing output with expected output in every period. If the central bank sets the nominal interest rate equal to the discount rate of the representative agent, then the long-run rate of inflation is positive (and the same) on almost every path. By contrast, the classical Fisher equation asserts that inflation should then be zero. In fact, no constant interest rate will stabilize prices, even if the economy is stationary with bounded i.d.d. shocks. The central bank must actively manage interest rates if it wants to keep prices bounded forever. However, not even an active central bank can keep prices exactly constant.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=415502
Download Restriction: no

Paper provided by Yale School of Management in its series Yale School of Management Working Papers with number ysm388.

as
in new window

Length:
Date of creation: 28 Jul 2004
Date of revision:
Handle: RePEc:ysm:somwrk:ysm388
Contact details of provider: Web page: http://icf.som.yale.edu/

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ysm:somwrk:ysm388. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.