IDEAS home Printed from
   My bibliography  Save this paper

The Role of Boundary Solutions in Principal-Agent Problems with Effort Costs Depending on Mean Returns


  • Hellwig, Martin

    () (Sonderforschungsbereich 504)


The paper takes issue with the suggestion of Holmström and Milgrom (1987) that optimal incentive schemes in Brownian-motion models of principal-agent relations with effort costs depending on mean returns are linear in cumulative total returns. In such models, if actions are restricted to compact sets, boundary actions are optimal and typically can be implemented with lower risk premia than are implied by linear schemes. The paper characterizes optimal incentive schemes for discrete-time approximations as well as the Brownian-motion model itself. Solutions for discrete-time approximations - and the continuous-time limits of such solutions - always lie on the boundary.

Suggested Citation

  • Hellwig, Martin, 2001. "The Role of Boundary Solutions in Principal-Agent Problems with Effort Costs Depending on Mean Returns," Sonderforschungsbereich 504 Publications 01-51, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
  • Handle: RePEc:xrs:sfbmaa:01-51
    Note: This paper owes a lot to Klaus Schmidt and Paul Milgrom. Klaus Schmidt made the observation that in the static agency model with effort cost depending only on mean returns, the principal prefers the action that involves the lowest risk premium and therefore will implement a boundary action. Paul Milgrom suggested that this reasoning for the static model must have a counterpart in the continuous-time model. I am very grateful to both. I am also grateful for helpful remarks from Drew Fudenberg and Bengt Holmström and for financial support from the Taussig Chair at Harvard University and from the Deutsche Forschungsgemeinschaft through Sonderforschungsbereich 504 at the University of Mannheim.

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Hellwig, Martin F., 2007. "The role of boundary solutions in principal-agent problems of the Holmstrom-Milgrom type," Journal of Economic Theory, Elsevier, vol. 136(1), pages 446-475, September.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:xrs:sfbmaa:01-51. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Carsten Schmidt). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.