IDEAS home Printed from https://ideas.repec.org/p/wyi/wpaper/002052.html
   My bibliography  Save this paper

Semiparametric Estimation of Partially Varying-Coefficient

Author

Listed:
  • Zongwu Cai
  • Linna Chen
  • Ying Fang

Abstract

This paper studies a new class of semiparametric dynamic panel data models, in which some coefficients are allowed to depend on some informative variables and some regressors can be endogenous. To estimate both parametric and nonparametric coefficients, a three-stage semiparametric estimation method is proposed. The nonparametric GMM is proposed to estimate all coefficients firstly and the average method is used to obtain the root-N consistent estimator of parametric coefficients. At the last stage, the estimator of varying coefficients is obtained by plugging the parametric estimator into the model. The consistency and asymptotic normality of both estimators are derived, and furthermore, the efficient estimation of parametric coefficients is discussed. Monte Carlo simulations verify the theoretical results and demonstrate that our estimators work well even in a finite sample.

Suggested Citation

  • Zongwu Cai & Linna Chen & Ying Fang, 2013. "Semiparametric Estimation of Partially Varying-Coefficient," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
  • Handle: RePEc:wyi:wpaper:002052
    as

    Download full text from publisher

    File URL: https://econpub.xmu.edu.cn/research/repec/upload/2011122949217055475115776.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Xuemei, 2017. "Semi-parametric inference for semi-varying coefficient panel data model with individual effects," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 262-281.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wyi:wpaper:002052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: WISE Technical Team (email available below). General contact details of provider: https://www.wise.xmu.edu.cn/english/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.