IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Cooperative equilibria in the finite iterated prisoner's dilemma

Listed author(s):
  • Kae Nemoto

    (National Institute of Informatics, Japan)

  • Michael J Gagen

    (Institute for Molecular Bioscience, University of Queensland)

Nash equilibria are defined using uncorrelated behavioural or mixed joint probability distributions effectively assuming that players of bounded rationality must discard information to locate equilibria. We propose instead that rational players will use all the information available in correlated distributions to constrain payoff function topologies and gradients to generate novel 'constrained' equilibria, each one a backwards induction pathway optimizing payoffs in the constrained space. In the finite iterated prisoner's dilemma, we locate constrained equilibria maximizing payoffs via cooperation additional to the unconstrained (Nash) equilibrium maximizing payoffs via defection. Our approach clarifies the usual assumptions hidden in backwards induction.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://econwpa.repec.org/eps/game/papers/0404/0404001.pdf
Download Restriction: no

Paper provided by EconWPA in its series Game Theory and Information with number 0404001.

as
in new window

Length: 15 pages
Date of creation: 12 Apr 2004
Handle: RePEc:wpa:wuwpga:0404001
Note: Type of Document - pdf; pages: 15
Contact details of provider: Web page: http://econwpa.repec.org

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpga:0404001. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.