IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Multifactor Generalization of "Discount-Bond Derivatives on a Recombining Binomial Tree"

Listed author(s):
  • J. Chalupa
Registered author(s):

    The security dynamics described by the Black-Scholes equation with price-dependent variance can be approximated as a damped discrete-time hopping process on a recombining binomial tree. In a previous working paper, such a nonuniform tree was explicitly constructed in terms of the continuous-time variance. The present note outlines how the previous procedure could be extended to multifactor Black-Scholes with price- and time-dependent coefficients. The basic idea is to derive new coordinates which give a Black-Scholes equation with all the "sigmas" equal to unity. In the discrete-time tree coresponding to this equation, nodes are uniformly spaced and the hopping probabilities are not constant. When the new coordinates are mapped back onto prices, the ensuing tree is nonuniform. A derivative can be valued with the new coordinates or the original prices.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: no

    Paper provided by EconWPA in its series Finance with number 9706001.

    in new window

    Length: 5 pages
    Date of creation: 02 Jun 1997
    Handle: RePEc:wpa:wuwpfi:9706001
    Note: Type of Document - LaTeX; prepared on IBM PC ; pages: 5 ; figures: None
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:9706001. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.