IDEAS home Printed from
   My bibliography  Save this paper

Linear Convergence of Epsilon-Subgradient Descent Methods for a Class of Convex Functions


  • S.M. Robinson


This paper establishes a linear convergence rate for a class of epsilon-subgradient descent methods for minimizing certain convex functions. Currently prominent methods belonging to this class include the resolvent (proximal point) method and the bundle method in proximal form (considered as a sequence of serious steps). Other methods, such as the recently proposed descent proximal level method, may also fit this framework depending on implementation. The convex functions covered by the analysis are those whose conjugates have subdifferentials that are locally upper Lipschitzian at the origin, a class introduced by Zhang and Treiman. We argue that this class is a natural candidate for study in connection with minimization algorithms.

Suggested Citation

  • S.M. Robinson, 1996. "Linear Convergence of Epsilon-Subgradient Descent Methods for a Class of Convex Functions," Working Papers wp96041, International Institute for Applied Systems Analysis.
  • Handle: RePEc:wop:iasawp:wp96041

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: no

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:iasawp:wp96041. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.