IDEAS home Printed from https://ideas.repec.org/p/wiw/wus045/7565.html
   My bibliography  Save this paper

Matter and regulation: socio-metabolic and accumulation regimes of French capitalism since 1948

Author

Listed:
  • Cahen-Fourot, Louison
  • Magalhães, Nelo

Abstract

This paper aims at integrating macroeconomic and institutional analyses of long run dynamics of capitalism with material flow analysis. We investigate the links between accumulation and socio-metabolic regimes by studying French capitalism from a material perspective since 1948. We characterize its social metabolism both in production- and consumption-based approaches. We show that the periodization of accumulation regimes in terms of Fordism and Neoliberalism translates into material terms. The offshore materiality of Neoliberalism partly substitutes for and partly complements the more domestic materiality inherited from Fordism. The transition phase between the two socio-metabolic regimes clearly corresponds to the emergence of the offshoring-financialization nexus of French capitalism indicating the shift from the fordist accumulation regime to the neoliberal accumulation regime. Acknowledging that socio-metabolic regimes have their own logic, we highlight strong inter-linkages between accumulation and material dynamics and discuss how materials may be instrumental in shaping accumulation regimes. This work therefore illustrates the relevance of combining institutional macroeconomics with methods and approaches derived from Ecological Economics.

Suggested Citation

  • Cahen-Fourot, Louison & Magalhães, Nelo, 2020. "Matter and regulation: socio-metabolic and accumulation regimes of French capitalism since 1948," Ecological Economic Papers 34, WU Vienna University of Economics and Business.
  • Handle: RePEc:wiw:wus045:7565
    as

    Download full text from publisher

    File URL: https://epub.wu.ac.at/7565/
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Schaffartzik, Anke & Mayer, Andreas & Eisenmenger, Nina & Krausmann, Fridolin, 2016. "Global patterns of metal extractivism, 1950–2010: Providing the bones for the industrial society's skeleton," Ecological Economics, Elsevier, vol. 122(C), pages 101-110.
    2. Lutter, Stephan & Giljum, Stefan & Bruckner, Martin, 2016. "A review and comparative assessment of existing approaches to calculate material footprints," Ecological Economics, Elsevier, vol. 127(C), pages 1-10.
    3. Stefan Giljum & Martin Bruckner & Aldo Martinez, 2015. "Material Footprint Assessment in a Global Input-Output Framework," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 792-804, October.
    4. Magalhães, Nelo & Fressoz, Jean-Baptiste & Jarrige, François & Le Roux, Thomas & Levillain, Gaëtan & Lyautey, Margot & Noblet, Guillaume & Bonneuil, Christophe, 2019. "The Physical Economy of France (1830–2015). The History of a Parasite?," Ecological Economics, Elsevier, vol. 157(C), pages 291-300.
    5. Manfred Lenzen & Daniel Moran & Keiichiro Kanemoto & Arne Geschke, 2013. "Building Eora: A Global Multi-Region Input-Output Database At High Country And Sector Resolution," Economic Systems Research, Taylor & Francis Journals, vol. 25(1), pages 20-49, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Louison Cahen-Fourot & Nelo Magalhães, 2020. "Matter and regulation: socio-metabolic and accumulation regimes of French capitalism since 1948," CEPN Working Papers halshs-02554906, HAL.
    2. Piñero, Pablo & Pérez-Neira, David & Infante-Amate, Juan & Chas-Amil, María L. & Doldán-García, Xoán R., 2020. "Unequal raw material exchange between and within countries: Galicia (NW Spain) as a core-periphery economy," Ecological Economics, Elsevier, vol. 172(C).
    3. Pothen, Frank & Tovar Reaños, Miguel Angel, 2018. "The Distribution of Material Footprints in Germany," Ecological Economics, Elsevier, vol. 153(C), pages 237-251.
    4. Kucukvar, Murat & Haider, Muhammad Ali & Onat, Nuri Cihat, 2017. "Exploring the material footprints of national electricity production scenarios until 2050: The case for Turkey and UK," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 251-263.
    5. Usubiaga-Liaño, Arkaitz & Arto, Iñaki & Acosta-Fernández, José, 2021. "Double accounting in energy footprint and related assessments: How common is it and what are the consequences?," Energy, Elsevier, vol. 222(C).
    6. Piñero, Pablo & Cazcarro, Ignacio & Arto, Iñaki & Mäenpää, Ilmo & Juutinen, Artti & Pongrácz, Eva, 2018. "Accounting for Raw Material Embodied in Imports by Multi-regional Input-Output Modelling and Life Cycle Assessment, Using Finland as a Study Case," Ecological Economics, Elsevier, vol. 152(C), pages 40-50.
    7. Johannes Buhl & Christa Liedtke & Sebastian Schuster & Katrin Bienge, 2020. "Predicting the Material Footprint in Germany between 2015 and 2020 via Seasonally Decomposed Autoregressive and Exponential Smoothing Algorithms," Resources, MDPI, vol. 9(11), pages 1-17, October.
    8. Monsalve, Fabio & Zafrilla, Jorge Enrique & Cadarso, María-Ángeles, 2016. "Where have all the funds gone? Multiregional input-output analysis of the European Agricultural Fund for Rural Development," Ecological Economics, Elsevier, vol. 129(C), pages 62-71.
    9. Stefan Giljum & Hanspeter Wieland & Stephan Lutter & Martin Bruckner & Richard Wood & Arnold Tukker & Konstantin Stadler, 2016. "Identifying priority areas for European resource policies: a MRIO-based material footprint assessment," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-24, December.
    10. Pothen, Frank, 2017. "A structural decomposition of global Raw Material Consumption," Ecological Economics, Elsevier, vol. 141(C), pages 154-165.
    11. Eisenmenger, Nina & Wiedenhofer, Dominik & Schaffartzik, Anke & Giljum, Stefan & Bruckner, Martin & Schandl, Heinz & Wiedmann, Thomas O. & Lenzen, Manfred & Tukker, Arnold & Koning, Arjan, 2016. "Consumption-based material flow indicators — Comparing six ways of calculating the Austrian raw material consumption providing six results," Ecological Economics, Elsevier, vol. 128(C), pages 177-186.
    12. Cem Iskender Aydin & Begum Ozkaynak & Beatriz Rodríguez-Labajos & Taylan Yenilmez, 2017. "Network effects in environmental justice struggles: An investigation of conflicts between mining companies and civil society organizations from a network perspective," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-20, July.
    13. Rodrigo Mesa-Arango & Badri Narayanan & Satish V. Ukkusuri, 2019. "The Impact of International Crises on Maritime Transportation Based Global Value Chains," Networks and Spatial Economics, Springer, vol. 19(2), pages 381-408, June.
    14. Simon Schulte & Arthur Jakobs & Stefan Pauliuk, 2021. "Relaxing the import proportionality assumption in multi-regional input–output modelling," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 10(1), pages 1-21, December.
    15. -, 2016. "The South American input-output table: Key assumptions and methodological considerations," Documentos de Proyectos 40832, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    16. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    17. Joya, Omar, 2015. "Growth and volatility in resource-rich countries: Does diversification help?," Structural Change and Economic Dynamics, Elsevier, vol. 35(C), pages 38-55.
    18. Gideon Ndubuisi & Solomon Owusu, 2021. "How important is GVC participation to export upgrading?," The World Economy, Wiley Blackwell, vol. 44(10), pages 2887-2908, October.
    19. He, Peijun & Ng, Tsan Sheng & Su, Bin, 2019. "Energy-economic resilience with multi-region input–output linear programming models," Energy Economics, Elsevier, vol. 84(C).
    20. Jun Nakatani & Tamon Maruyama & Kosuke Fukuchi & Yuichi Moriguchi, 2015. "A Practical Approach to Screening Potential Environmental Hotspots of Different Impact Categories in Supply Chains," Sustainability, MDPI, vol. 7(9), pages 1-15, August.

    More about this item

    Keywords

    Material Flow Analysis; Material footprint; Socio-metabolic regime; Financialization; Offshoring; Accumulation regime;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wus045:7565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: WU Library (email available below). General contact details of provider: https://research.wu.ac.at/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.