IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

The emerging structure of Russian urban systems: a classification based on Self-Organizing Maps

Listed author(s):
  • Lidia Diappi
  • Paola Bolchi
  • Irina Slepukhina


Registered author(s):

    This paper argues that there is a complex socio-economic, spatial and political trend towards increasing unevenness among Russian cities against the shortage of researches about Russian urbanized space. In addition to this Russia experiences a lack of studies taking into account that, in modern globalized world, cities are considered as a power machine stimulating the country's development. The urban researches on Russian cities mainly are focusing on Moscow and Saint Petersburg, or on some regional capitals and cities hosting mega-events such as Vladivostok and Sochi. As a matter of fact, a considerable part of Russian cities have lost themselves in the new market conditions since the general vector of urban development has changed after the USSR breakup. Great transformations have occurred in both inter and intra urban levels. The disparity of country's development has increased: European Russia and Northern regions with rich oil and gas deposits are becoming more affluent, while Far East and Siberian regions are undergoing population loss and resources outflows. In spite of contemporary Russian policy is mainly focused on the national and regional issues, world economy is more and more aware that cities are the growth poles for a whole country. Therefore an updated development policy demands a re-scaling at the urban level and requires a precise analysis of urban condition and dynamics. The paper aims to classify the whole Russian urban system on the base of some socio-economic characteristics: demographic dynamics, housing quality, economic performance at two temporal thresholds. The adopted method, the Neural Network Self-Organizing Maps (SOM), is able to single out groups of cities with high internal resemblance. The paper starts with a brief overview of the urban networks formation during soviet period, its transformation after the breakup of the USSR and the consequences of these two processes for the contemporary cities. The second section explains the data which will be used for the analysis and describes the used SOM algorithm. The subsequent section presents the analysis of the results describing spatial urban patterns in terms of quantities and geographical characteristics. The conclusions discuss the nature of those patterns. Due to SOM implementation it has been possible to identify twenty five groups of cities, with similar socio-economic trends during the last decade, where each group is characterized by an appropriate profile (a codebook). Moreover the empirical results have allowed sketching a new urban hierarchy in Russia, outlining four layers: 'urban engine', 'strong cities'; 'potential cities' and 'weak cities'. The outcomes will allow the definition of appropriate urban development strategies.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by European Regional Science Association in its series ERSA conference papers with number ersa13p1135.

    in new window

    Date of creation: Nov 2013
    Handle: RePEc:wiw:wiwrsa:ersa13p1135
    Contact details of provider: Postal:
    Welthandelsplatz 1, 1020 Vienna, Austria

    Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa13p1135. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gunther Maier)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.