IDEAS home Printed from https://ideas.repec.org/p/wiw/wiwrsa/ersa03p550.html
   My bibliography  Save this paper

Measurement Errors and their Propagation in the Registration of Remote Sensing Images (?)

Author

Listed:
  • Yee Leung
  • Yong Ge
  • Jianghong Ma
  • Jinfeng Wang

Abstract

Reference control points (RCPs) used in establishing the regression model in the registration or geometric correction of remote sensing images are generally assumed to be ?perfect?. That is, the RCPs, as explanatory variables in the regression equation, are accurate and the coordinates of their locations have no errors. Thus ordinary least squares (OLS) estimator has been applied extensively to the registration or geometric correction of remotely sensed data. However, this assumption is often invalid in practice because RCPs always contain errors. Moreover, the errors are actually one of the main sources which lower the accuracy of geometric correction of an uncorrected image. Under this situation, the OLS estimator is biased. It cannot handle explanatory variables with errors and cannot propagate appropriately errors from the RCPs to the corrected image. Therefore, it is essential to develop new feasible methods to overcome such a problem. In this paper, we introduce the consistent adjusted least squares (CALS) estimator and propose a relaxed consistent adjusted least squares (RCALS) method, with the latter being more general and flexible, for geometric correction or registration. These estimators have good capability in correcting errors contained in the RCPs, and in propagating appropriately errors of the RCPs to the corrected image with and without prior information. The objective of the CALS and our proposed RCALS estimators is to improve the accuracy of measurement value by weakening the measurement errors. The validity of the CALS and RCALS estimators are first demonstrated by applying them to perform geometric corrections of controlled simulated images. The conceptual arguments are further substantiated by a real-life example. Compared to the OLS estimator, the CALS and RCALS estimators give a superior overall performances in estimating the regression coefficients and variance of measurement errors. Keywords: error propagation, geometric correction, ordinary least squares, registration, relaxed consistent adjusted least squares, remote sensing images.

Suggested Citation

  • Yee Leung & Yong Ge & Jianghong Ma & Jinfeng Wang, 2003. "Measurement Errors and their Propagation in the Registration of Remote Sensing Images (?)," ERSA conference papers ersa03p550, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa03p550
    as

    Download full text from publisher

    File URL: https://www-sre.wu.ac.at/ersa/ersaconfs/ersa03/cdrom/papers/550.pdf
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa03p550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gunther Maier (email available below). General contact details of provider: http://www.ersa.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.