IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Beating the Tit for Tat: Using a Genetic Algorithm to Build an Effective Adaptive Behavior

Listed author(s):

Agents capable of adaptive behavior can be obtained by means of AI tools. Thanks to these, they develop the ability to vary their Behavior in order to achieve satisfying results in the simulated environment. In the paper, artificially intelligent agents play an iterated prisoner' s dilemma against agents that reproduce (in a fix way) strategies that have emerged in Axelrod' s toumament. The objective of the adaptive agent is to earn a payoff higher than one of the Tit-for-tat, the strategy which has shown the better performance in the Axelrod's experimental setup. In the work, Genetic Algorithms are employed to produce and modify rules that are apt to achieve the set task. The adaptive dynamics is analysed in depth in order to understand the issues related to the codification of knowledge and to the evaluation of diverse strategies. In order to highlight different nuances of these matters we have amended the method as to improve it and experimented different knowledge's codifications.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by University of Turin in its series Department of Economics and Statistics Cognetti de Martiis. Working Papers with number 200604.

in new window

Length: 24 pages
Date of creation: Jan 2006
Handle: RePEc:uto:dipeco:200604
Contact details of provider: Postal:
Lungo Dora Siena 100, I-10153 Torino

Phone: +39 011670 4406
Fax: +39 011670 3895
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Tesfatsion, Leigh S., 2009. "Web Site for Agent-Based Computational Economics (ACE)," Staff General Research Papers Archive 4021, Iowa State University, Department of Economics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:uto:dipeco:200604. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Piero Cavaleri)

or (Marina Grazioli)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.