IDEAS home Printed from https://ideas.repec.org/p/ucm/doctra/03-02.html
   My bibliography  Save this paper

Using rough sets to predict insolvency of Spanish non-life insurance companies

Author

Abstract

Insolvency of insurance companies has been a concern of several parties stemmed from the perceived need to protect the general public and to try to minimize the costs associated to this problem such as the effects on state insurance guaranty funds or the responsibilities for management and auditors. Most methods applied in the past to predict business failure in insurance companies are techniques of statistical nature and use financial ratios as explicative variables. These variables do not normally satisfy statistical assumptions so we propose an approach to predict insolvency of insurance companies based on Rough Set Theory. Some of the advantages of this approach are: first, it is a useful tool to analyse information systems representing knowledge gained by experience; second, elimination of the redundant variables is got, so we can focus on minimal subsets of variables to evaluate insolvency and the cost of the decision making process and time employed by the decision maker are reduced; third, a model consisted of a set of easily understandable decision rules is produced and it is not necessary the interpretation of an expert and, fourth, these rules based on the experience are well supported by a set of real examples so this allows the argumentation of the decisions we make. This study completes previous researches for bankruptcy prediction based on Rough Set Theory developing a prediction model for Spanish non-life insurance companies and using general financial ratios as well as those that are specifically proposed for evaluating insolvency of insurance sector. The results are very encouraging in comparison with discriminant analysis and show that Rough Set Theory can be a useful tool for parties interested in evaluating insolvency of an insurance firm.

Suggested Citation

  • María Jesús Segovia Vargas & José Antonio Gil Fana & Antonio José Heras Martínez & José Luis Vilar Zanón & Alicia Sanchis Arellano, 2003. "Using rough sets to predict insolvency of Spanish non-life insurance companies," Documentos de trabajo de la Facultad de Ciencias Económicas y Empresariales 03-02, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales.
  • Handle: RePEc:ucm:doctra:03-02
    as

    Download full text from publisher

    File URL: http://eprints.ucm.es/6801/1/0302.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Dimitras, A. I. & Slowinski, R. & Susmaga, R. & Zopounidis, C., 1999. "Business failure prediction using rough sets," European Journal of Operational Research, Elsevier, vol. 114(2), pages 263-280, April.
    2. Nurmi, Hannu & Kacprzyk, Janusz & Fedrizzi, Mario, 1996. "Probabilistic, fuzzy and rough concepts in social choice," European Journal of Operational Research, Elsevier, vol. 95(2), pages 264-277, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Business failure; Insolvency; Insurance companies; Rough set; Discriminant analysis.;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucm:doctra:03-02. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Águeda González Abad). General contact details of provider: http://edirc.repec.org/data/feucmes.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.